Guo Hongsun, Salahshoor Hossein, Wu Di, Yoo Sangjin, Sato Tomokazu, Tsao Doris Y, Shapiro Mikhail G
bioRxiv. 2023 May 24:2023.05.22.541780. doi: 10.1101/2023.05.22.541780.
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
近期对啮齿动物进行的超声神经调节(UNM)研究表明,聚焦超声(FUS)可激活外周听觉通路,导致脱靶及全脑兴奋,这掩盖了FUS对靶区域的直接激活作用。为解决这一问题,我们开发了一种新的小鼠模型,即双转基因Pou4f3+/DTR × Thy1-GCaMP6s,该模型可利用白喉毒素实现诱导性致聋,并在将UNM的脱靶效应降至最低的同时,通过荧光钙成像观察神经活动的影响。利用该模型,我们发现,在一定压力范围内,FUS引起的听觉干扰可显著减少或消除。在较高压力下,FUS可导致靶区域出现局灶性荧光下降,引发非听觉感觉干扰,并损伤组织,导致去极化扩散。在我们测试的声学条件下,我们未在小鼠皮层观察到直接的钙反应。我们的研究结果为UNM和声遗传学研究提供了更纯净的动物模型,确定了可可靠避免脱靶效应的参数范围,并揭示了高压刺激的非听觉副作用。