Suppr超能文献

用于聚焦超声(FUS)神经调节的膜片钳技术

Patch Clamp Technology for Focused Ultrasonic (FUS) Neuromodulation.

作者信息

Kim Eun Sok, Chang Su-Youne

机构信息

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.

Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.

出版信息

Methods Mol Biol. 2022;2393:657-670. doi: 10.1007/978-1-0716-1803-5_35.

Abstract

Electrical stimulation of neural tissue, such as deep brain stimulation (DBS) and cortical stimulation, is widely applied therapeutic neuromodulation techniques for neurologic disorders. Penetrating electrodes (e.g., microwires and silicon probes) for DBS provide high spatial resolution, but are invasive, displacing neural tissue, producing acute insertion trauma, and potentially eliciting a foreign-body response. Surface electrodes, while less invasive, cannot generate a highly localized electrical field. Motivated by these limitations, the goal of this chapter is to provide a protocol to run patch clamp experiments on rat brain slices with a focused ultrasonic transducer that offers minimally invasive and highly localized neuronal stimulation (and that is thin enough to let light to pass through for optical observation of neuron cells for patching). Though focused acoustic beams with high energy are traditionally used for cellular ablation, the goal here is to use low acoustic energy to avoid any ablation or lesion, exploiting the unprecedented features of self-focusing acoustic transducers (SFATs) that can focus 2-20 MHz sound waves at a submillimeter-sized area. The experimental procedures described here will allow intracellular and extracellular experiments to determine the value and underlying mechanisms of neuromodulation effects induced by SFAT-based ultrasonic stimulation. The aims of this protocol are (1) to fabricate SFATs for the proposed intracellular and extracellular experiments and (2) to characterize the neuromodulatory function evoked by SFAT-based ultrasound stimulation in normal brain slices. Using patch clamp methods, one can monitor ionic flux and local field potentials, while varying the acoustic stimulation frequency, intensity, pulse width, pulse shape and pulse repetition frequency as well as the focal spot(s), focal size and force direction. The patch clamp experiments will provide insights into biologic mechanisms of ultrasonic neural stimulation, and could be a critical step toward the development of a minimally invasive alternative to neuromodulation by electrical stimulation in the treatment of neurologic disorders such as epilepsy. If the underlying mechanisms of ultrasonic neural stimulation are well understood, a transcranial focused ultrasound beam can possibly modulate pathological neural activities, without surgery, running wire, or any damaging effects from penetrating probe.

摘要

对神经组织进行电刺激,如深部脑刺激(DBS)和皮层刺激,是用于治疗神经系统疾病的广泛应用的治疗性神经调节技术。用于DBS的穿透性电极(如微丝和硅探针)提供了高空间分辨率,但具有侵入性,会移位神经组织,产生急性插入创伤,并可能引发异物反应。表面电极虽然侵入性较小,但不能产生高度局部化的电场。受这些限制的推动,本章的目标是提供一种方案,使用聚焦超声换能器在大鼠脑片上进行膜片钳实验,该换能器提供微创且高度局部化的神经元刺激(并且足够薄以让光通过用于对神经元细胞进行膜片钳操作的光学观察)。尽管传统上高能量的聚焦声束用于细胞消融,但这里的目标是使用低声能以避免任何消融或损伤,利用自聚焦超声换能器(SFAT)前所未有的特性,其可以在亚毫米大小的区域聚焦2 - 20 MHz的声波。这里描述的实验程序将允许进行细胞内和细胞外实验,以确定基于SFAT的超声刺激诱导的神经调节作用的价值和潜在机制。该方案的目标是(1)制造用于所提议的细胞内和细胞外实验的SFAT,以及(2)表征基于SFAT的超声刺激在正常脑片中诱发的神经调节功能。使用膜片钳方法,可以监测离子通量和局部场电位,同时改变声刺激频率、强度、脉冲宽度、脉冲形状和脉冲重复频率以及焦点、焦斑大小和力的方向。膜片钳实验将深入了解超声神经刺激的生物学机制,并且可能是朝着开发一种微创替代方法迈出的关键一步,该方法可用于治疗癫痫等神经系统疾病的电刺激神经调节。如果能够很好地理解超声神经刺激的潜在机制,经颅聚焦超声束可能能够在不进行手术、不埋线或不产生穿透性探针的任何损伤效应的情况下调节病理性神经活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验