Suppr超能文献

超声神经调节通过间接听觉机制引起广泛的皮层激活。

Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Neuron. 2018 Jun 6;98(5):1031-1041.e5. doi: 10.1016/j.neuron.2018.05.009. Epub 2018 May 24.

Abstract

Ultrasound has received widespread attention as an emerging technology for targeted, non-invasive neuromodulation based on its ability to evoke electrophysiological and motor responses in animals. However, little is known about the spatiotemporal pattern of ultrasound-induced brain activity that could drive these responses. Here, we address this question by combining focused ultrasound with wide-field optical imaging of calcium signals in transgenic mice. Surprisingly, we find cortical activity patterns consistent with indirect activation of auditory pathways rather than direct neuromodulation at the ultrasound focus. Ultrasound-induced activity is similar to that evoked by audible sound. Furthermore, both ultrasound and audible sound elicit motor responses consistent with a startle reflex, with both responses reduced by chemical deafening. These findings reveal an indirect auditory mechanism for ultrasound-induced cortical activity and movement requiring careful consideration in future development of ultrasonic neuromodulation as a tool in neuroscience research.

摘要

超声因其能够在动物中引发电生理和运动反应,作为一种新兴的靶向、非侵入性神经调节技术而受到广泛关注。然而,对于能够产生这些反应的超声诱导脑活动的时空模式知之甚少。在这里,我们通过将聚焦超声与转基因小鼠的钙信号宽场光学成像相结合来解决这个问题。令人惊讶的是,我们发现皮层活动模式与听觉通路的间接激活一致,而不是超声焦点处的直接神经调节。超声诱导的活动与可听声音引起的活动相似。此外,超声和可听声音都引起与惊跳反射一致的运动反应,而这两种反应都被化学失聪所抑制。这些发现揭示了超声诱导皮层活动和运动的间接听觉机制,在未来将超声神经调节作为神经科学研究的工具进行开发时需要仔细考虑。

相似文献

1
Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism.
Neuron. 2018 Jun 6;98(5):1031-1041.e5. doi: 10.1016/j.neuron.2018.05.009. Epub 2018 May 24.
2
Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway.
Neuron. 2018 Jun 6;98(5):1020-1030.e4. doi: 10.1016/j.neuron.2018.04.036. Epub 2018 May 24.
3
Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation.
Brain Stimul. 2019 Jul-Aug;12(4):901-910. doi: 10.1016/j.brs.2019.03.005. Epub 2019 Mar 6.
4
Encoding of acquired sound-sequence salience by auditory cortical offset responses.
Cell Rep. 2021 Nov 2;37(5):109927. doi: 10.1016/j.celrep.2021.109927.
5
Spatiotemporal Distributions of Acoustic Propagation in Skull During Ultrasound Neuromodulation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 May;71(5):584-595. doi: 10.1109/TUFFC.2024.3383027. Epub 2024 May 10.
6
A Layer 3→5 Circuit in Auditory Cortex That Contributes to Pre-pulse Inhibition of the Acoustic Startle Response.
Front Neural Circuits. 2020 Oct 30;14:553208. doi: 10.3389/fncir.2020.553208. eCollection 2020.
7
Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.
J Neural Eng. 2018 Jun;15(3):035004. doi: 10.1088/1741-2552/aaaee1. Epub 2018 Feb 13.
8
Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation.
iScience. 2023 Oct 31;26(12):108372. doi: 10.1016/j.isci.2023.108372. eCollection 2023 Dec 15.
9
The mechanosensitive ion channel Piezo1 contributes to ultrasound neuromodulation.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300291120. doi: 10.1073/pnas.2300291120. Epub 2023 Apr 25.
10
High-Resolution Focused Ultrasound Neuromodulation Induces Limb-Specific Motor Responses in Mice in Vivo.
Ultrasound Med Biol. 2021 Apr;47(4):998-1013. doi: 10.1016/j.ultrasmedbio.2020.12.013. Epub 2021 Jan 14.

引用本文的文献

3
An ultrasound-scanning light source.
Res Sq. 2025 Jun 19:rs.3.rs-6773130. doi: 10.21203/rs.3.rs-6773130/v1.
4
Synaptotoxic effects of extracellular tau are mediated by its microtubule-binding region.
Acta Neuropathol. 2025 Jun 2;149(1):56. doi: 10.1007/s00401-025-02897-0.
5
Transcranial ultrasound stimulation in neuromodulation: a bibliometric analysis from 2004 to 2024.
Front Neurosci. 2025 May 13;19:1595061. doi: 10.3389/fnins.2025.1595061. eCollection 2025.
8
Parameter optimisation for mitigating somatosensory confounds during transcranial ultrasonic stimulation.
bioRxiv. 2025 Mar 19:2025.03.19.642045. doi: 10.1101/2025.03.19.642045.
9
Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression.
Front Neural Circuits. 2025 Feb 25;19:1516839. doi: 10.3389/fncir.2025.1516839. eCollection 2025.

本文引用的文献

1
Acoustically targeted chemogenetics for the non-invasive control of neural circuits.
Nat Biomed Eng. 2018 Jul;2(7):475-484. doi: 10.1038/s41551-018-0258-2. Epub 2018 Jul 9.
2
Ketamine Inhibits Ultrasound Stimulation-Induced Neuromodulation by Blocking Cortical Neuron Activity.
Ultrasound Med Biol. 2018 Mar;44(3):635-646. doi: 10.1016/j.ultrasmedbio.2017.11.008. Epub 2017 Dec 21.
3
Toward a Cognitive Neural Prosthesis Using Focused Ultrasound.
Front Neurosci. 2017 Nov 15;11:607. doi: 10.3389/fnins.2017.00607. eCollection 2017.
4
Ultrasound for the brain.
Nature. 2017 Nov 9;551(7679):257-259. doi: 10.1038/d41586-017-05479-7.
5
Sound wave propagation on the human skull surface with bone conduction stimulation.
Hear Res. 2017 Nov;355:1-13. doi: 10.1016/j.heares.2017.07.005. Epub 2017 Sep 23.
6
Learning shapes the aversion and reward responses of lateral habenula neurons.
Elife. 2017 May 31;6:e23045. doi: 10.7554/eLife.23045.
7
Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions.
Nano Lett. 2017 Feb 8;17(2):652-659. doi: 10.1021/acs.nanolett.6b03517. Epub 2017 Jan 23.
8
Automated identification of mouse visual areas with intrinsic signal imaging.
Nat Protoc. 2017 Jan;12(1):32-43. doi: 10.1038/nprot.2016.158. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验