Center for Computational Mathematics, Flatiron Institute, New York, New York 10010, United States.
Center for Computational Biology, Flatiron Institute, New York, New York 10010, United States.
J Phys Chem B. 2023 Jun 22;127(24):5410-5421. doi: 10.1021/acs.jpcb.3c01087. Epub 2023 Jun 9.
Cryo-electron microscopy (cryo-EM) has recently become a leading method for obtaining high-resolution structures of biological macromolecules. However, cryo-EM is limited to biomolecular samples with low conformational heterogeneity, where most conformations can be well-sampled at various projection angles. While cryo-EM provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot retrieve the ensemble distribution of possible molecular conformations from these data. To overcome these limitations, we build on a previous Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particle images by reweighting a prior conformational ensemble, e.g., from molecular dynamics simulations or structure prediction tools. Our work provides a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM particle images of a simulated protein that explores multiple folded and unfolded conformations.
冷冻电子显微镜(cryo-EM)最近已成为获得生物大分子高分辨率结构的主要方法。然而,cryo-EM 仅限于构象异质性低的生物分子样品,在这些样品中,大多数构象可以在不同的投影角度下很好地采样。虽然 cryo-EM 为异质分子提供了单分子数据,但大多数现有的重建工具无法从这些数据中恢复可能分子构象的集合分布。为了克服这些限制,我们基于以前的贝叶斯方法,并开发了一个集合细化框架,通过重新加权先验构象集合(例如,来自分子动力学模拟或结构预测工具)来从一组 cryo-EM 粒子图像中估计集合密度。我们的工作提供了一种从单分子数据直接在构象空间中恢复生物分子平衡概率密度的通用方法。为了验证该框架,我们研究了从简单的玩具模型和模拟蛋白质的合成 cryo-EM 粒子图像中提取状态群体和自由能的情况,该蛋白质探索了多种折叠和未折叠构象。