Suppr超能文献

三维独立基体中边缘暴露的 CuP 纳米晶的高载量调节亲锂位点用于高性能锂金属负极。

High Mass Loading of Edge-Exposed CuP Nanocrystal in 3D Freestanding Matrix Regulating Lithiophilic Sites for High-Performance Lithium Metal Anode.

机构信息

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada.

出版信息

ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29352-29362. doi: 10.1021/acsami.3c00740. Epub 2023 Jun 9.

Abstract

Lithium (Li) dendrites and volume expansion during repeated Li plating and stripping processes are the major obstacles to the development of advanced Li metal batteries. Li nucleation and dendrite growth can be controlled and inhibited spatially by using 3-dimensional (3D) hosts together with efficient lithiophilic materials. To realize next-generation Li-metal batteries, it is critical to effectively regulate the surface structure of the lithiophilic crystals. Herein, exposed-edged CuP faceted nanoparticles anchored along the interlaced carbon nanofibers (ECP@CNF) are developed as a highly efficient 3D Li host. Through the 3D interlaced rigid carbon skeleton, volume expansion can be accommodated. The (300)-dominant edged crystal facets of CuP with abundant exposed P sites not only exhibit strong micro-structural Li affinity but also have relatively high charge transference to nucleate uniformly and effectively, resulting in reduced polarization. Consequently, under a high current density of 10 mA cm with a high discharge of depth (60%), ECP@CNF/Li symmetric cells demonstrate outstanding cycling stability for 500 h with a small voltage hysteresis of 32.8 mV. Notably, the ECP@CNF/Li∥LiFePO full cell exhibits a more stable cycling performance for 650 cycles under a high rate of 1 C, with capacity retention up to 92% (N/P = 10, 4.7 mg cm LiFePO). Even under a limit Li (3.4 mA h) with an N/P ratio of 2 (8.9 mg cm LiFePO), ECP@CNF/Li∥LiFePO full cell can also demonstrate excellent reversibility and stable cycling performance with higher utilization of Li. This work provides an insight view into constructing high-performance Li-metal batteries under more strict conditions.

摘要

锂(Li)枝晶和在反复的 Li 电镀和剥离过程中的体积膨胀是开发先进的 Li 金属电池的主要障碍。通过使用 3 维(3D)主体和高效亲锂材料,可以空间控制和抑制 Li 成核和枝晶生长。为了实现下一代 Li 金属电池,有效地调节亲锂晶体的表面结构至关重要。在此,暴露边缘的 CuP 面心纳米粒子沿交错的碳纳米纤维(ECP@CNF)锚定,作为一种高效的 3D Li 主体。通过 3D 交错的刚性碳骨架,可以容纳体积膨胀。CuP 的(300)主导边缘晶面具有丰富的暴露的 P 位,不仅表现出强烈的微观结构 Li 亲和力,而且具有相对较高的电荷转移能力,从而均匀有效地成核,从而降低极化。因此,在 10 mA cm 的高电流密度和 60%的高放电深度下,ECP@CNF/Li 对称电池表现出出色的循环稳定性,具有 32.8 mV 的小电压滞后。值得注意的是,在高倍率 1 C 下,ECP@CNF/Li∥LiFePO 全电池在 650 次循环中表现出更稳定的循环性能,容量保持率高达 92%(N/P = 10,4.7 mg cm LiFePO)。即使在 N/P 比为 2(8.9 mg cm LiFePO)和限制 Li(3.4 mA h)的情况下,ECP@CNF/Li∥LiFePO 全电池也能表现出出色的可逆性和稳定的循环性能,实现更高的 Li 利用率。这项工作为在更严格的条件下构建高性能 Li 金属电池提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验