Suppr超能文献

基于心音特征和心肌肌钙蛋白 I 的运动后心脏状态分析与识别。

Analysis and recognition of post-exercise cardiac state based on heart sound features and cardiac troponin I.

机构信息

Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Communications Sergeant School, Army Engineering University of PLA, Chongqing, China.

出版信息

Eur J Appl Physiol. 2023 Nov;123(11):2461-2471. doi: 10.1007/s00421-023-05245-w. Epub 2023 Jun 9.

Abstract

PURPOSE

Excessive intensity exercises can bring irreversible damage to the heart. We explore whether heart sounds can evaluate cardiac function after high-intensity exercise and hope to prevent overtraining through the changes of heart sound in future training.

METHODS

The study population consisted of 25 male athletes and 24 female athletes. All subjects were healthy and had no history of cardiovascular disease or family history of cardiovascular disease. The subjects were required to do high-intensity exercise for 3 days, with their blood sample and heart sound (HS) signals being collected and analysed before and after exercise. We then developed a Kernel extreme learning machine (KELM) model that can distinguish the state of heart by using the pre- and post-exercise data.

RESULTS

There was no significant change in serum cardiac troponin I after 3 days of load cross-country running, which indicates that there was no myocardial injury after the race. The statistical analysis of time-domain characteristics and multi-fractal characteristic parameters of HS showed that the cardiac reserve capacity of the subjects was enhanced after the cross-country running, and the KELM is an effective classifier to recognize HS and the state of the heart after exercise.

CONCLUSION

Through the results, we can draw the conclusion that this intensity of exercise will not cause profound damage to the athlete's heart. The findings of this study are of great significance for evaluating the condition of the heart with the proposed index of heart sound and prevention of excessive training that causes damage to the heart.

摘要

目的

过度的强度训练会对心脏造成不可逆转的损伤。我们探索了心音是否可以评估高强度运动后的心脏功能,并希望通过未来训练中心音的变化来预防过度训练。

方法

研究对象为 25 名男性运动员和 24 名女性运动员。所有受试者均健康,无心血管疾病史或心血管疾病家族史。要求受试者进行为期 3 天的高强度运动,在运动前后采集和分析血样和心音(HS)信号。然后,我们开发了一个核极端学习机(KELM)模型,该模型可以通过使用运动前后的数据来区分心脏的状态。

结果

负荷越野跑 3 天后血清心肌肌钙蛋白 I 无明显变化,提示运动后无心肌损伤。HS 的时域特征和多重分形特征参数的统计分析表明,越野跑后受试者的心脏储备能力增强,KELM 是一种有效的 HS 识别和运动后心脏状态分类器。

结论

通过这些结果可以得出结论,这种强度的运动不会对运动员的心脏造成深刻的损伤。本研究的结果对于用心音提出的指标评估心脏状况以及预防导致心脏损伤的过度训练具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验