Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Optics and Photonics, Beijing Institute of Technology, 100081 Beijing, China.
TCL Corporate Research, No. 1001 Zhongshan Park Road, Shenzhen, Guangdong 518067, China.
Nano Lett. 2023 Jun 28;23(12):5738-5745. doi: 10.1021/acs.nanolett.3c01491. Epub 2023 Jun 9.
The operational stability of the blue quantum dot light-emitting diode (QLED) has been one of the most important obstacles to initialize its industrialization. In this work, we demonstrate a machine learning assisted methodology to illustrate the operational stability of blue QLEDs by analyzing the measurements of over 200 samples (824 QLED devices) including current density-voltage-luminance (J-V-L), impedance spectra (IS), and operational lifetime (T95@1000 cd/m). The methodology is able to predict the operational lifetime of the QLED with a Pearson correlation coefficient of 0.70 with a convolutional neural network (CNN) model. By applying a classification decision tree analysis of 26 extracted features of J-V-L and IS curves, we illustrate the key features in determining the operational stability. Furthermore, we simulated the device operation using an equivalent circuit model to discuss the device degradation related operational mechanisms.
蓝色量子点发光二极管(QLED)的工作稳定性一直是其工业化的重要障碍之一。在这项工作中,我们通过分析超过 200 个样本(824 个 QLED 器件)的电流密度-电压-亮度(J-V-L)、阻抗谱(IS)和工作寿命(T95@1000 cd/m)的测量结果,展示了一种机器学习辅助方法来阐明蓝色 QLED 的工作稳定性。该方法能够通过卷积神经网络(CNN)模型预测 QLED 的工作寿命,其皮尔逊相关系数为 0.70。通过对 J-V-L 和 IS 曲线的 26 个提取特征进行分类决策树分析,我们说明了决定工作稳定性的关键特征。此外,我们使用等效电路模型模拟器件的工作,以讨论与器件退化相关的工作机制。