Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
SwissFEL and Laboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
Science. 2017 Jul 7;357(6346):71-75. doi: 10.1126/science.aak9946.
The interactions that lead to the emergence of superconductivity in iron-based materials remain a subject of debate. It has been suggested that electron-electron correlations enhance electron-phonon coupling in iron selenide (FeSe) and related pnictides, but direct experimental verification has been lacking. Here we show that the electron-phonon coupling strength in FeSe can be quantified by combining two time-domain experiments into a "coherent lock-in" measurement in the terahertz regime. X-ray diffraction tracks the light-induced femtosecond coherent lattice motion at a single phonon frequency, and photoemission monitors the subsequent coherent changes in the electronic band structure. Comparison with theory reveals a strong enhancement of the coupling strength in FeSe owing to correlation effects. Given that the electron-phonon coupling affects superconductivity exponentially, this enhancement highlights the importance of the cooperative interplay between electron-electron and electron-phonon interactions.
铁基材料中超导性出现的相互作用仍然是一个争论的话题。有人认为电子-电子相关增强了铁硒化物(FeSe)和相关的磷化物中的电子-声子耦合,但缺乏直接的实验验证。在这里,我们通过将两个时域实验结合成太赫兹区域的“相干锁相”测量,表明 FeSe 中的电子-声子耦合强度可以被量化。X 射线衍射跟踪光诱导的飞秒相干晶格运动在单个声子频率下,光电子发射监测随后电子能带结构的相干变化。与理论的比较表明,由于相关效应,FeSe 中的耦合强度得到了很大的增强。鉴于电子-声子耦合对超导性呈指数增强,这种增强突出了电子-电子和电子-声子相互作用之间协同相互作用的重要性。