Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan.
PLoS One. 2023 Jun 9;18(6):e0284022. doi: 10.1371/journal.pone.0284022. eCollection 2023.
Pollution in human-made fishing ports caused by petroleum from boats, dead fish, toxic chemicals, and effluent poses a challenge to the organisms in seawater. To decipher the impact of pollution on the microbiome, we collected surface water from a fishing port and a nearby offshore island in northern Taiwan facing the Northwestern Pacific Ocean. By employing 16S rRNA gene amplicon sequencing and whole-genome shotgun sequencing, we discovered that Rhodobacteraceae, Vibrionaceae, and Oceanospirillaceae emerged as the dominant species in the fishing port, where we found many genes harboring the functions of antibiotic resistance (ansamycin, nitroimidazole, and aminocoumarin), metal tolerance (copper, chromium, iron and multimetal), virulence factors (chemotaxis, flagella, T3SS1), carbohydrate metabolism (biofilm formation and remodeling of bacterial cell walls), nitrogen metabolism (denitrification, N2 fixation, and ammonium assimilation), and ABC transporters (phosphate, lipopolysaccharide, and branched-chain amino acids). The dominant bacteria at the nearby offshore island (Alteromonadaceae, Cryomorphaceae, Flavobacteriaceae, Litoricolaceae, and Rhodobacteraceae) were partly similar to those in the South China Sea and the East China Sea. Furthermore, we inferred that the microbial community network of the cooccurrence of dominant bacteria on the offshore island was connected to dominant bacteria in the fishing port by mutual exclusion. By examining the assembled microbial genomes collected from the coastal seawater of the fishing port, we revealed four genomic islands containing large gene-containing sequences, including phage integrase, DNA invertase, restriction enzyme, DNA gyrase inhibitor, and antitoxin HigA-1. In this study, we provided clues for the possibility of genomic islands as the units of horizontal transfer and as the tools of microbes for facilitating adaptation in a human-made port environment.
人为渔港中的船只石油、死鱼、有毒化学品和污水造成的污染对海水生物构成了挑战。为了解释污染对微生物组的影响,我们从台湾北部面向西北太平洋的一个渔港和附近的一个近海岛屿收集了表层海水。通过 16S rRNA 基因扩增子测序和全基因组鸟枪法测序,我们发现红杆菌科、弧菌科和海洋螺旋菌科成为渔港中的优势物种,在那里我们发现了许多携带有抗生素抗性(安莎霉素、硝基咪唑和氨基香豆素)、金属耐受性(铜、铬、铁和多金属)、毒力因子(趋化性、鞭毛、T3SS1)、碳水化合物代谢(生物膜形成和细菌细胞壁重塑)、氮代谢(反硝化、固氮和铵同化)和 ABC 转运蛋白(磷酸盐、脂多糖和支链氨基酸)功能的基因。附近近海岛屿(交替单胞菌科、Cryomorphaceae 科、黄杆菌科、Litoricolaceae 科和红杆菌科)的优势细菌与南海和东海的部分相似。此外,我们推断近海岛屿上优势细菌的共生微生物群落网络通过互斥与渔港中的优势细菌相连。通过检查从渔港沿海水域收集的组装微生物基因组,我们揭示了四个含有大基因序列的基因组岛,包括噬菌体整合酶、DNA 反转录酶、限制酶、DNA 拓扑异构酶抑制剂和抗毒素 HigA-1。在这项研究中,我们为基因组岛作为水平转移的单位以及微生物适应人为港口环境的工具提供了线索。