Department of Physics, Emory University, Atlanta, GA, USA.
Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
BMC Bioinformatics. 2023 Jun 9;24(1):243. doi: 10.1186/s12859-023-05363-4.
Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly variable genome content that complicates the inference of genetic interactions. In this study, we develop a method for detecting coevolving genes from large datasets of bacterial genomes based on pairwise comparisons of closely related individuals, analogous to a pedigree study in eukaryotic populations. We apply our method to pairs of genes from the Staphylococcus aureus accessory genome of over 75,000 annotated gene families using a database of over 40,000 whole genomes. We find many pairs of genes that appear to be gained or lost in a coordinated manner, as well as pairs where the gain of one gene is associated with the loss of the other. These pairs form networks of rapidly coevolving genes, primarily consisting of genes involved in virulence, mechanisms of horizontal gene transfer, and antibiotic resistance, particularly the SCCmec complex. While we focus on gene gain and loss, our method can also detect genes that tend to acquire substitutions in tandem, or genotype-phenotype or phenotype-phenotype coevolution. Finally, we present the R package DeCoTUR that allows for the computation of our method.
细菌基因组表现出广泛的水平基因转移,导致基因组内容高度可变,这使得遗传相互作用的推断变得复杂。在这项研究中,我们基于密切相关个体之间的成对比较,为从大量细菌基因组数据集检测共进化基因开发了一种方法,类似于真核生物群体中的系谱研究。我们将该方法应用于来自金黄色葡萄球菌辅助基因组的超过 75000 个注释基因家族的基因对,使用了超过 40000 个全基因组数据库。我们发现了许多对似乎以协调方式获得或丢失的基因对,以及一对基因的获得与另一对基因的丢失相关的基因对。这些基因对形成了快速共进化基因网络,主要由与毒力、水平基因转移机制和抗生素耐药性相关的基因组成,特别是 SCCmec 复合物。虽然我们专注于基因的获得和丢失,但我们的方法也可以检测到倾向于串联获得替换的基因,或基因型-表型或表型-表型共进化的基因。最后,我们提出了 R 包 DeCoTUR,可以计算我们的方法。