Suppr超能文献

QuPath算法在组织芯片中准确识别MLH1缺陷型炎症性肠病相关结直肠癌。

QuPath Algorithm Accurately Identifies MLH1-Deficient Inflammatory Bowel Disease-Associated Colorectal Cancers in a Tissue Microarray.

作者信息

Porter Ross J, Din Shahida, Bankhead Peter, Oniscu Anca, Arends Mark J

机构信息

Edinburgh Pathology, CRUK Scotland Centre, Institute of Genetics and Cancer (IGC), University of Edinburgh, Scotland EH4 2XU, UK.

Edinburgh IBD Unit, Western General Hospital, NHS Lothian, Scotland EH4 2XU, UK.

出版信息

Diagnostics (Basel). 2023 May 28;13(11):1890. doi: 10.3390/diagnostics13111890.

Abstract

Current methods for analysing immunohistochemistry are labour-intensive and often confounded by inter-observer variability. Analysis is time consuming when identifying small clinically important cohorts within larger samples. This study trained QuPath, an open-source image analysis program, to accurately identify MLH1-deficient inflammatory bowel disease-associated colorectal cancers (IBD-CRC) from a tissue microarray containing normal colon and IBD-CRC. The tissue microarray ( = 162 cores) was immunostained for MLH1, digitalised, and imported into QuPath. A small sample ( = 14) was used to train QuPath to detect positive versus no MLH1 and tissue histology (normal epithelium, tumour, immune infiltrates, stroma). This algorithm was applied to the tissue microarray and correctly identified tissue histology and MLH1 expression in the majority of valid cases (73/99, 73.74%), incorrectly identified MLH1 status in one case (1.01%), and flagged 25/99 (25.25%) cases for manual review. Qualitative review found five reasons for flagged cores: small quantity of tissue, diverse/atypical morphology, excessive inflammatory/immune infiltrations, normal mucosa, or weak/patchy immunostaining. Of classified cores ( = 74), QuPath was 100% (95% CI 80.49, 100) sensitive and 98.25% (95% CI 90.61, 99.96) specific for identifying MLH1-deficient IBD-CRC; κ = 0.963 (95% CI 0.890, 1.036) ( < 0.001). This process could be efficiently automated in diagnostic laboratories to examine all colonic tissue and tumours for MLH1 expression.

摘要

目前用于分析免疫组织化学的方法劳动强度大,且常常因观察者间的差异而变得复杂。在较大样本中识别具有临床重要意义的小群体时,分析过程耗时。本研究对开源图像分析程序QuPath进行了训练,以从包含正常结肠和炎症性肠病相关结直肠癌(IBD-CRC)的组织微阵列中准确识别MLH1缺陷型IBD-CRC。该组织微阵列(n = 162个芯块)进行了MLH1免疫染色、数字化处理,并导入QuPath。使用一个小样本(n = 14)训练QuPath,以检测MLH1阳性与阴性情况以及组织组织学(正常上皮、肿瘤、免疫浸润、基质)。该算法应用于组织微阵列,在大多数有效病例(73/99,73.74%)中正确识别了组织组织学和MLH1表达,在1例病例(1.01%)中错误识别了MLH1状态,并标记了25/99(25.25%)的病例进行人工复查。定性复查发现标记芯块有五个原因:组织量少、形态多样/不典型、炎症/免疫浸润过多、正常黏膜或免疫染色弱/呈斑片状。在分类的芯块(n = 74)中,QuPath识别MLH1缺陷型IBD-CRC的敏感性为100%(95%CI 80.49,100),特异性为98.25%(95%CI 90.61,99.96);κ = 0.963(95%CI 0.890,1.036)(P < 0.001)。这一过程在诊断实验室中可以高效自动化,以检查所有结肠组织和肿瘤的MLH1表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b1b/10253133/215a67aa6cb0/diagnostics-13-01890-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验