Suppr超能文献

使用小波变换听觉诱发电位信号和临床数据开发用于耳鸣相关痛苦分类的机器学习模型

Development of Machine-Learning Models for Tinnitus-Related Distress Classification Using Wavelet-Transformed Auditory Evoked Potential Signals and Clinical Data.

作者信息

Manta Ourania, Sarafidis Michail, Schlee Winfried, Mazurek Birgit, Matsopoulos George K, Koutsouris Dimitrios D

机构信息

Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece.

Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany.

出版信息

J Clin Med. 2023 Jun 4;12(11):3843. doi: 10.3390/jcm12113843.

Abstract

Tinnitus is a highly prevalent condition, affecting more than 1 in 7 adults in the EU and causing negative effects on sufferers' quality of life. In this study, we utilised data collected within the "UNITI" project, the largest EU tinnitus-related research programme. Initially, we extracted characteristics from both auditory brainstem response (ABR) and auditory middle latency response (AMLR) signals, which were derived from tinnitus patients. We then combined these features with the patients' clinical data, and integrated them to build machine learning models for the classification of individuals and their ears according to their level of tinnitus-related distress. Several models were developed and tested on different datasets to determine the most relevant features and achieve high performances. Specifically, seven widely used classifiers were utilised on all generated datasets: random forest (RF), linear, radial, and polynomial support vector machines (SVM), naive bayes (NB), neural networks (NN), and linear discriminant analysis (LDA). Results showed that features extracted from the wavelet-scattering transformed AMLR signals were the most informative data. In combination with the 15 LASSO-selected clinical features, the SVM classifier achieved optimal performance with an AUC value, sensitivity, and specificity of 92.53%, 84.84%, and 83.04%, respectively, indicating high discrimination performance between the two groups.

摘要

耳鸣是一种非常普遍的病症,在欧盟,每7名成年人中就有超过1人受其影响,对患者的生活质量产生负面影响。在本研究中,我们利用了在“UNITI”项目中收集的数据,该项目是欧盟最大的与耳鸣相关的研究项目。最初,我们从耳鸣患者的听觉脑干反应(ABR)和听觉中潜伏期反应(AMLR)信号中提取特征。然后,我们将这些特征与患者的临床数据相结合,并将它们整合起来,构建机器学习模型,以便根据个体及其耳朵与耳鸣相关的痛苦程度进行分类。我们开发了几个模型,并在不同的数据集上进行测试,以确定最相关的特征并实现高性能。具体而言,我们在所有生成的数据集中使用了七种广泛使用的分类器:随机森林(RF)、线性、径向和多项式支持向量机(SVM)、朴素贝叶斯(NB)、神经网络(NN)和线性判别分析(LDA)。结果表明,从小波散射变换后的AMLR信号中提取的特征是最具信息性的数据。结合15个经LASSO选择的临床特征,SVM分类器实现了最佳性能,AUC值、灵敏度和特异性分别为92.53%、84.84%和83.04%,表明两组之间具有较高的区分性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ab/10253417/2750337918e1/jcm-12-03843-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验