Suppr超能文献

基于小波散射变换特征的酒精性脑电图信号分类。

Classification of alcoholic EEG signals using wavelet scattering transform-based features.

机构信息

Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200, Pakistan.

Department of Electrical Engineering, Sukkur IBA University, Sukkur, 65200, Pakistan.

出版信息

Comput Biol Med. 2021 Dec;139:104969. doi: 10.1016/j.compbiomed.2021.104969. Epub 2021 Oct 22.

Abstract

Following the research question and the relevant dataset, feature extraction is the most important component of machine learning and data science pipelines. The wavelet scattering transform (WST) is a recently developed knowledge-based feature extraction technique and is structurally like a convolutional neural network (CNN). It preserves information in high-frequency, is insensitive to signal deformations, and generates low variance features of real-valued signals generally required in classification tasks. With data from a publicly-available UCI database, we investigated the ability of WST-based features extracted from multichannel electroencephalogram (EEG) signals to discriminate 1.0-s EEG records of 20 male subjects with alcoholism and 20 male healthy subjects. Using record-wise 10-fold cross-validation, we found that WST-based features, inputted to a support vector machine (SVM) classifier, were able to correctly classify all alcoholic and normal EEG records. Similar performances were achieved with 1D CNN. In contrast, the highest independent-subject-wise mean 10-fold cross-validation performance was achieved with WST-based features fed to a linear discriminant (LDA) classifier. The results achieved with two 10-fold cross-validation approaches suggest that the WST together with a conventional classifier is an alternative to CNN for classification of alcoholic and normal EEGs. WST-based features from occipital and parietal regions were the most informative at discriminating between alcoholic and normal EEG records.

摘要

在研究问题和相关数据集之后,特征提取是机器学习和数据科学管道中最重要的组成部分。小波散射变换(WST)是一种最近开发的基于知识的特征提取技术,其结构类似于卷积神经网络(CNN)。它保留了高频信息,对信号变形不敏感,并生成通常在分类任务中需要的实值信号的低方差特征。我们使用来自公共 UCI 数据库的数据,研究了基于 WST 的特征从多通道脑电图(EEG)信号中提取的能力,以区分 20 名男性酗酒者和 20 名男性健康受试者的 1.0 秒 EEG 记录。使用记录-wise 10 倍交叉验证,我们发现基于 WST 的特征输入支持向量机(SVM)分类器能够正确分类所有酒精和正常 EEG 记录。使用一维 CNN 也可以获得类似的性能。相比之下,基于 WST 的特征输入线性判别(LDA)分类器可实现最高的独立受试者-wise 10 倍交叉验证性能。两种 10 倍交叉验证方法的结果表明,WST 与传统分类器相结合是 CNN 用于分类酒精和正常 EEG 的替代方法。在区分酒精和正常 EEG 记录方面,来自枕部和顶叶区域的基于 WST 的特征最具信息量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验