Silva Tiago A R, Marques Ana C, Dos Santos Rui G, Shakoor Rana A, Taryba Maryna, Montemor Maria Fátima
Centro de Química Estrutural (CQE), Institute of Molecular Sciences (IMS), Departamento de Engenharia Química (DEQ), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
Centro de Recursos Naturais e Ambiente (CERENA), Departamento de Engenharia Química (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
Polymers (Basel). 2023 Jun 2;15(11):2561. doi: 10.3390/polym15112561.
Bio-based polyols were obtained from the thermochemical liquefaction of two biomass feedstocks, pinewood and , with conversion rates varying between 71.9 and 79.3 wt.%, and comprehensively characterized. They exhibit phenolic and aliphatic moieties displaying hydroxyl (OH) functional groups, as confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and nuclear magnetic resonance spectroscopy (NMR) analysis. The biopolyols obtained were successfully employed as a green raw material to produce bio-based polyurethane (BioPU) coatings on carbon steel substrates, using, as an isocyanate source, a commercial bio-based polyisocyanate-Desmodur Eco N7300. The BioPU coatings were analyzed in terms of chemical structure, the extent of the reaction of the isocyanate species, thermal stability, hydrophobicity, and adhesion strength. They show moderate thermal stability at temperatures up to 100 °C, and a mild hydrophobicity, displaying contact angles between 68° and 86°. The adhesion tests reveal similar pull-off strength values (ca. 2.2 MPa) for the BioPU either prepared with pinewood and -derived biopolyols (BPUI and BPUII). Electrochemical impedance spectroscopy (EIS) measurements were carried out on the coated substrates for 60 days in 0.05 M NaCl solution. Good corrosion protection properties were achieved for the coatings, with particular emphasis on the coating prepared with the pinewood-derived polyol, which exhibited a low-frequency impedance modulus normalized for the coating thickness of 6.1 × 10 Ω cm at the end of the 60 days test, three times higher than for coatings prepared with -derived biopolyols. The produced BioPU formulations show great potential for application as coatings, and for further modification with bio-based fillers and corrosion inhibitors.
生物基多元醇是通过两种生物质原料(松木和[此处原文缺失一种原料名称])的热化学液化获得的,转化率在71.9%至79.3 wt.%之间,并对其进行了全面表征。衰减全反射傅里叶变换红外光谱(ATR-FTIR)和核磁共振光谱(NMR)分析证实,它们具有显示羟基(OH)官能团的酚类和脂肪族部分。所获得的生物多元醇成功用作绿色原料,以商业生物基多异氰酸酯——Desmodur Eco N7300作为异氰酸酯源,在碳钢基材上制备生物基聚氨酯(BioPU)涂层。对BioPU涂层的化学结构、异氰酸酯物种的反应程度、热稳定性、疏水性和附着力强度进行了分析。它们在高达100°C的温度下表现出适度的热稳定性和轻度疏水性,接触角在68°至86°之间。附着力测试表明,用松木和[此处原文缺失一种原料名称]衍生的生物多元醇制备的BioPU(BPUI和BPUII)具有相似的拉拔强度值(约2.2 MPa)。在0.05 M NaCl溶液中对涂覆的基材进行了60天的电化学阻抗谱(EIS)测量。涂层具有良好的防腐性能,特别强调用松木衍生多元醇制备的涂层,在60天测试结束时,其低频阻抗模量经涂层厚度归一化后为6.1×10Ω·cm,是用[此处原文缺失一种原料名称]衍生生物多元醇制备的涂层的三倍。所制备的BioPU配方在用作涂层以及用生物基填料和缓蚀剂进行进一步改性方面显示出巨大的应用潜力。