Suppr超能文献

电调制磁电悬臂梁传感器的非期望振荡研究。

Investigation of Unwanted Oscillations of Electrically Modulated Magnetoelectric Cantilever Sensors.

机构信息

Integrated Systems and Photonics, Department of Electrical and Information Engineering, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany.

Nanoscale Magnetic Materials, Department of Material Science, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany.

出版信息

Sensors (Basel). 2023 May 23;23(11):5012. doi: 10.3390/s23115012.

Abstract

Magnetoelectric thin-film cantilevers consisting of strain-coupled magnetostrictive and piezoelectric layers are promising candidates for magnetic field measurements in biomedical applications. In this study, we investigate magnetoelectric cantilevers that are electrically excited and operated in a special mechanical mode with resonance frequencies above 500 kHz. In this particular mode, the cantilever bends in the short axis, forming a distinctive U-shape and exhibiting high-quality factors and a promising limit of detection of 70pT/Hz at 10 Hz. Despite this U mode, the sensors show a superimposed mechanical oscillation along the long axis. The induced local mechanical strain in the magnetostrictive layer results in magnetic domain activity. Due to this, the mechanical oscillation may cause additional magnetic noise, deteriorating the limit of detection of such sensors. We compare finite element method simulations with measurements of magnetoelectric cantilevers in order to understand the presence of oscillations. From this, we identify strategies for eliminating the external effects that affect sensor operation. Furthermore, we investigate the influence of different design parameters, in particular the cantilever length, material parameters and the type of clamping, on the amplitude of the undesired superimposed oscillations. We propose design guidelines to minimize the unwanted oscillations.

摘要

由应变耦合磁致伸缩和压电层组成的磁电薄膜悬臂梁是生物医学应用中磁场测量的有前途的候选者。在这项研究中,我们研究了电激励的磁电悬臂梁,其在特殊的机械模式下工作,具有高于 500 kHz 的谐振频率。在这种特殊模式下,悬臂梁在短轴方向弯曲,形成独特的 U 形,并具有高的品质因数和有希望的检测极限为 70pT/Hz 在 10 Hz。尽管存在 U 型模式,但传感器仍沿长轴表现出叠加的机械振荡。磁致伸缩层中感应的局部机械应变导致磁畴活动。因此,机械振动可能会导致额外的磁噪声,从而降低此类传感器的检测极限。我们将有限元方法模拟与磁电悬臂梁的测量进行比较,以了解振动的存在。由此,我们确定了消除影响传感器操作的外部影响的策略。此外,我们研究了不同设计参数对不期望的叠加振动幅度的影响,特别是悬臂梁长度、材料参数和夹紧类型。我们提出了设计准则来最小化不需要的振动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3931/10255186/86ce5f8786aa/sensors-23-05012-g001.jpg

相似文献

3
Electrode position optimization in magnetoelectric sensors based on magnetostrictive-piezoelectric bilayers on cantilever substrates.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Mar;61(3):392-8. doi: 10.1109/TUFFC.2014.2924.
4
Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields.
Sci Rep. 2019 Nov 8;9(1):16355. doi: 10.1038/s41598-019-52657-w.
5
Exchange biasing of magnetoelectric composites.
Nat Mater. 2012 Apr 22;11(6):523-9. doi: 10.1038/nmat3306.
8
A review on equivalent magnetic noise of magnetoelectric laminate sensors.
Philos Trans A Math Phys Eng Sci. 2014 Jan 13;372(2009):20120455. doi: 10.1098/rsta.2012.0455. Print 2014 Feb 28.
9
Magnetoelastic Coupling and Delta-E Effect in Magnetoelectric Torsion Mode Resonators.
Sensors (Basel). 2021 Mar 12;21(6):2022. doi: 10.3390/s21062022.
10
High Isolation, Double-Clamped, Magnetoelectric Microelectromechanical Resonator Magnetometer.
Sensors (Basel). 2023 Oct 21;23(20):8626. doi: 10.3390/s23208626.

引用本文的文献

2
Phononic-Crystal-Based SAW Magnetic-Field Sensors.
Micromachines (Basel). 2023 Nov 20;14(11):2130. doi: 10.3390/mi14112130.

本文引用的文献

1
Quantitative Evaluation for Magnetoelectric Sensor Systems in Biomagnetic Diagnostics.
Sensors (Basel). 2022 Jan 28;22(3):1018. doi: 10.3390/s22031018.
2
Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields.
Sci Rep. 2019 Nov 8;9(1):16355. doi: 10.1038/s41598-019-52657-w.
3
A review on equivalent magnetic noise of magnetoelectric laminate sensors.
Philos Trans A Math Phys Eng Sci. 2014 Jan 13;372(2009):20120455. doi: 10.1098/rsta.2012.0455. Print 2014 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验