Suppr超能文献

优化的视觉物联网在 5G 传感器网络设备中的视频流增强应用。

Optimized Visual Internet of Things for Video Streaming Enhancement in 5G Sensor Network Devices.

机构信息

Institute of Computer Science & Digital Innovations, UCSI University, Kuala Lumpur 56000, Malaysia.

Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.

出版信息

Sensors (Basel). 2023 May 25;23(11):5072. doi: 10.3390/s23115072.

Abstract

The global expansion of the Visual Internet of Things (VIoT)'s deployment with multiple devices and sensor interconnections has been widespread. Frame collusion and buffering delays are the primary artifacts in the broad area of VIoT networking applications due to significant packet loss and network congestion. Numerous studies have been carried out on the impact of packet loss on Quality of Experience (QoE) for a wide range of applications. In this paper, a lossy video transmission framework for the VIoT considering the KNN classifier merged with the H.265 protocols. The performance of the proposed framework was assessed while considering the congestion of encrypted static images transmitted to the wireless sensor networks. The performance analysis of the proposed KNN-H.265 protocol is compared with the existing traditional H.265 and H.264 protocols. The analysis suggests that the traditional H.264 and H.265 protocols cause video conversation packet drops. The performance of the proposed protocol is estimated with the parameters of frame number, delay, throughput, packet loss ratio, and Peak Signal to Noise Ratio (PSNR) on MATLAB 2018a simulation software. The proposed model gives 4% and 6% better PSNR values than the existing two methods and better throughput.

摘要

随着多设备和传感器互联的广泛应用,可视物联网 (VIoT) 的全球扩展部署已经普及。由于数据包丢失和网络拥塞严重,帧合谋和缓冲延迟成为 VIoT 网络应用的主要问题。许多研究都针对各种应用中数据包丢失对体验质量 (QoE) 的影响进行了研究。在本文中,提出了一种考虑 KNN 分类器与 H.265 协议融合的 VIoT 有损视频传输框架。在考虑无线传感器网络中传输的加密静态图像拥塞的情况下,评估了所提出框架的性能。将所提出的 KNN-H.265 协议的性能分析与现有的传统 H.265 和 H.264 协议进行了比较。分析表明,传统的 H.264 和 H.265 协议会导致视频会话数据包丢失。在 MATLAB 2018a 仿真软件上,使用帧数、延迟、吞吐量、丢包率和峰值信噪比 (PSNR) 等参数对所提出的协议进行了性能评估。与现有的两种方法相比,所提出的模型在 PSNR 值上提高了 4%和 6%,并且具有更好的吞吐量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a1f/10255507/54798e7c4480/sensors-23-05072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验