Suppr超能文献

基于声传感器的桥梁伸缩缝健康监测系统的渐进分类器机制。

Progressive Classifier Mechanism for Bridge Expansion Joint Health Status Monitoring System Based on Acoustic Sensors.

机构信息

School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.

School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China.

出版信息

Sensors (Basel). 2023 May 26;23(11):5090. doi: 10.3390/s23115090.

Abstract

The application of IoT (Internet of Things) technology to the health monitoring of expansion joints is of great importance in enhancing the efficiency of bridge expansion joint maintenance. In this study, a low-power, high-efficiency, end-to-cloud coordinated monitoring system analyzes acoustic signals to identify faults in bridge expansion joints. To address the issue of scarce authentic data related to bridge expansion joint failures, an expansion joint damage simulation data collection platform is established for well-annotated datasets. Based on this, a progressive two-level classifier mechanism is proposed, combining template matching based on AMPD (Automatic Peak Detection) and deep learning algorithms based on VMD (Variational Mode Decomposition), denoising, and utilizing edge and cloud computing power efficiently. The simulation-based datasets were used to test the two-level algorithm, with the first-level edge-end template matching algorithm achieving fault detection rates of 93.3% and the second-level cloud-based deep learning algorithm achieving classification accuracy of 98.4%. The proposed system in this paper has demonstrated efficient performance in monitoring the health of expansion joints, according to the aforementioned results.

摘要

物联网(IoT)技术在伸缩缝健康监测中的应用,对于提高桥梁伸缩缝维护效率具有重要意义。本研究提出了一种低功耗、高效率、端到云协调的监测系统,通过分析声信号来识别桥梁伸缩缝的故障。针对桥梁伸缩缝故障相关真实数据稀缺的问题,建立了一个带有充分标注数据的伸缩缝损伤模拟数据采集平台。在此基础上,提出了一种渐进式两级分类机制,结合基于 AMPD(自动峰值检测)的模板匹配和基于 VMD(变分模态分解)的深度学习算法,实现了有效的边缘和云计算能力利用以及去噪。使用基于仿真的数据集对两级算法进行了测试,一级边缘端模板匹配算法的故障检测率达到了 93.3%,二级基于云的深度学习算法的分类准确率达到了 98.4%。根据上述结果,本文提出的系统在监测伸缩缝健康状况方面表现出了高效的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5b/10255669/efa3880dbed8/sensors-23-05090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验