Suppr超能文献

基于物联网和雾计算的心血管病患者监测系统,使用深度神经网络进行自动心电图分类。

An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks.

机构信息

Institut Valencià d'Investigació en Intel·ligència Artificial (VRAIN), Universitat Politècnica de València, 46022 València, Spain.

Department of Physiology, School of Medicine, Universitat de València, 46010 València, Spain.

出版信息

Sensors (Basel). 2020 Dec 21;20(24):7353. doi: 10.3390/s20247353.

Abstract

Telemedicine and all types of monitoring systems have proven to be a useful and low-cost tool with a high level of applicability in cardiology. The objective of this work is to present an IoT-based monitoring system for cardiovascular patients. The system sends the ECG signal to a Fog layer service by using the LoRa communication protocol. Also, it includes an AI algorithm based on deep learning for the detection of Atrial Fibrillation and other heart rhythms. The automatic detection of arrhythmias can be complementary to the diagnosis made by the physician, achieving a better clinical vision that improves therapeutic decision making. The performance of the proposed system is evaluated on a dataset of 8.528 short single-lead ECG records using two merge MobileNet networks that classify data with an accuracy of 90% for atrial fibrillation.

摘要

远程医疗和各种监测系统已被证明是一种有用且低成本的工具,在心脏病学中有很高的适用性。本工作的目的是提出一种基于物联网的心血管病患者监测系统。该系统使用 LoRa 通信协议将 ECG 信号发送到雾层服务。此外,它还包括一个基于深度学习的 AI 算法,用于检测心房颤动和其他心律。心律失常的自动检测可以作为医生诊断的补充,实现更好的临床观察,从而改善治疗决策。所提出的系统在一个包含 8528 个短单导联 ECG 记录的数据集上进行了评估,使用两个合并的 MobileNet 网络对数据进行分类,心房颤动的准确率达到 90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3d7/7767482/5406207cb855/sensors-20-07353-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验