Suppr超能文献

基于人工神经网络和混合随机优化的结构损伤评估。

Damage assessment in structures using artificial neural network working and a hybrid stochastic optimization.

机构信息

Laboratory Soete, Department of Electrical Energy, Metals, Mechanical Constructions, and Systems, Faculty of Engineering and Architecture, Ghent University, 9000, Gent, Belgium.

Department of Bridge and Tunnel Engineering, Faculty of Civil Engineering, University of Transport and Communications, Hanoi, Vietnam.

出版信息

Sci Rep. 2022 Mar 23;12(1):4958. doi: 10.1038/s41598-022-09126-8.

Abstract

Artificial neural network (ANN) has been commonly used to deal with many problems. However, since this algorithm applies backpropagation algorithms based on gradient descent (GD) technique to look for the best solution, the network may face major risks of being entrapped in local minima. To overcome those drawbacks of ANN, in this work, we propose a novel ANN working parallel with metaheuristic algorithms (MAs) to train the network. The core idea is that first, (1) GD is applied to increase the convergence speed. (2) If the network is stuck in local minima, the capacity of the global search technique of MAs is employed. (3) After escaping from local minima, the GD technique is applied again. This process is applied until the target is achieved. Additionally, to increase the efficiency of the global search capacity, a hybrid of particle swarm optimization and genetic algorithm (PSOGA) is employed. The effectiveness of ANNPSOGA is assessed using both numerical models and measurement. The results demonstrate that ANNPSOGA provides higher accuracy than traditional ANN, PSO, and other hybrid ANNs (even a higher level of noise is employed) and also considerably decreases calculational cost compared with PSO.

摘要

人工神经网络 (ANN) 已被广泛应用于处理许多问题。然而,由于该算法基于梯度下降 (GD) 技术应用反向传播算法来寻找最佳解决方案,因此网络可能面临陷入局部最小值的重大风险。为了克服 ANN 的这些缺点,在这项工作中,我们提出了一种新的 ANN,它与启发式算法 (MAs) 并行工作来训练网络。核心思想是,首先,(1) 应用 GD 来提高收敛速度。(2) 如果网络陷入局部最小值,将利用 MAs 的全局搜索技术的能力。(3) 从局部最小值中逃脱后,再次应用 GD 技术。这个过程一直持续到达到目标。此外,为了提高全局搜索能力的效率,采用了粒子群优化和遗传算法 (PSOGA) 的混合算法。通过数值模型和测量评估了 ANNPSOGA 的有效性。结果表明,ANNPSOGA 比传统 ANN、PSO 和其他混合 ANN(即使使用更高水平的噪声)提供更高的准确性,并且与 PSO 相比,计算成本也大大降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7657/8943197/4173267568bd/41598_2022_9126_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验