Suppr超能文献

实验性乳腺微波感应中的肿瘤检测与图像质量分析的回顾与分析。

Review and Analysis of Tumour Detection and Image Quality Analysis in Experimental Breast Microwave Sensing.

机构信息

Department of Physics & Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada.

出版信息

Sensors (Basel). 2023 May 27;23(11):5123. doi: 10.3390/s23115123.

Abstract

This review evaluates the methods used for image quality analysis and tumour detection in experimental breast microwave sensing (BMS), a developing technology being investigated for breast cancer detection. This article examines the methods used for image quality analysis and the estimated diagnostic performance of BMS for image-based and machine-learning tumour detection approaches. The majority of image analysis performed in BMS has been qualitative and existing quantitative image quality metrics aim to describe image contrast-other aspects of image quality have not been addressed. Image-based diagnostic sensitivities between 63 and 100% have been achieved in eleven trials, but only four articles have estimated the specificity of BMS. The estimates range from 20 to 65%, and do not demonstrate the clinical utility of the modality. Despite over two decades of research in BMS, significant challenges remain that limit the development of this modality as a clinical tool. The BMS community should utilize consistent image quality metric definitions and include image resolution, noise, and artifacts in their analyses. Future work should include more robust metrics, estimates of the diagnostic specificity of the modality, and machine-learning applications should be used with more diverse datasets and with robust methodologies to further enhance BMS as a viable clinical technique.

摘要

这篇综述评估了在实验性微波乳腺感知(BMS)中用于图像质量分析和肿瘤检测的方法,BMS 是一种正在研究用于乳腺癌检测的新兴技术。本文探讨了用于图像质量分析的方法,以及 BMS 在基于图像和基于机器学习的肿瘤检测方法中的估计诊断性能。BMS 中进行的大多数图像分析都是定性的,现有的定量图像质量指标旨在描述图像对比度-其他图像质量方面尚未涉及。在十一项试验中,已经实现了基于图像的诊断敏感性在 63%至 100%之间,但只有四篇文章估计了 BMS 的特异性。这些估计值范围从 20%到 65%,并没有证明该模式的临床实用性。尽管 BMS 的研究已经进行了二十多年,但仍存在重大挑战,限制了该模式作为临床工具的发展。BMS 社区应利用一致的图像质量指标定义,并在分析中包括图像分辨率、噪声和伪影。未来的工作应包括更强大的指标,估计该模式的诊断特异性,以及应使用更多样化的数据集和更稳健的方法来进一步增强 BMS 作为一种可行的临床技术的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50f6/10255334/100dcef6ebed/sensors-23-05123-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验