Suppr超能文献

基于小波特征提取和遗传算法神经网络的微波乳腺肿瘤定位。

Microwave breast tumor localization using wavelet feature extraction and genetic algorithm-neural network.

机构信息

Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin, P.R. China.

Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China.

出版信息

Med Phys. 2021 Oct;48(10):6080-6093. doi: 10.1002/mp.15198. Epub 2021 Sep 10.

Abstract

PURPOSE

Ultra-Wide Band (UWB) microwave breast cancer detection is a promising new technology for routine physical examination and home monitoring. The existing microwave imaging algorithms for breast tumor detection are complex and the effect is still not ideal, due to the heterogeneity of breast tissue, skin reflection, and fibroglandular tissue reflection in backscatter signals. This study aims to develop a machine learning method to accurately locate breast tumor.

METHODS

A microwave-based breast tumor localization method is proposed by time-frequency feature extraction and neural network technology. First, the received microwave array signals are converted into representative and compact features by 4-level Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). Then, the Genetic Algorithm-Neural Network (GA-NN) is developed to tune hyper-parameters of the neural network adaptively. The neural network embedded in the GA-NN algorithm is a four-layer architecture and 10-fold cross-validation is performed. Through the trained neural network, the tumor localization performance is evaluated on four datasets that are created by FDTD simulation method from 2-D MRI-derived breast models with varying tissue density, shape, and size. Each dataset consists of 1000 backscatter signals with different tumor positions, in which the ratio of training set to test set is 9:1. In order to verify the generalizability and scalability of the proposed method, the tumor localization performance is also tested on a 3-D breast model.

RESULTS

For these 2-D breast models with unknown tumor locations, the evaluation results show that the proposed method has small location errors, which are 0.6076 mm, 3.0813 mm, 2.0798 mm, and 3.2988 mm, respectively, and high accuracy, which is 99%, 80%, 94%, and 85%, respectively. Furthermore, the location error and the prediction accuracy of the 3-D breast model are 3.3896 mm and 81%.

CONCLUSIONS

These evaluation results demonstrate that the proposed machine learning method is effective and accurate for microwave breast tumor localization. The traditional microwave-based breast cancer detection method is to reconstruct the entire breast image to highlight the tumor. Compared with the traditional method, our proposed method can directly get the breast tumor location by applying neural network to the received microwave array signals, and circumvent any complicated image reconstruction processing.

摘要

目的

超宽带(UWB)微波乳腺癌检测是一种有前途的新技术,可用于常规体检和家庭监测。由于乳腺组织、皮肤反射和背散射信号中的纤维腺体组织反射的异质性,现有的用于乳腺肿瘤检测的微波成像算法比较复杂,效果仍然不理想。本研究旨在开发一种机器学习方法来准确定位乳腺肿瘤。

方法

通过时频特征提取和神经网络技术,提出了一种基于微波的乳腺肿瘤定位方法。首先,通过 4 级离散小波变换(DWT)和主成分分析(PCA)将接收到的微波阵列信号转换为有代表性和紧凑的特征。然后,开发遗传算法-神经网络(GA-NN)自适应调整神经网络的超参数。嵌入 GA-NN 算法中的神经网络是一个四层结构,进行了 10 倍交叉验证。通过训练好的神经网络,在通过 FDTD 模拟方法从二维 MRI 衍生的乳腺模型中创建的四个数据集上评估肿瘤定位性能,这些数据集的组织密度、形状和大小各不相同。每个数据集由 1000 个具有不同肿瘤位置的回波信号组成,其中训练集和测试集的比例为 9:1。为了验证所提出方法的泛化能力和可扩展性,还在三维乳腺模型上测试了肿瘤定位性能。

结果

对于这些未知肿瘤位置的二维乳腺模型,评估结果表明,所提出的方法具有较小的位置误差,分别为 0.6076mm、3.0813mm、2.0798mm 和 3.2988mm,并且具有较高的准确性,分别为 99%、80%、94%和 85%。此外,三维乳腺模型的位置误差和预测精度分别为 3.3896mm 和 81%。

结论

这些评估结果表明,所提出的机器学习方法对于微波乳腺肿瘤定位是有效且准确的。传统的基于微波的乳腺癌检测方法是重建整个乳腺图像以突出肿瘤。与传统方法相比,我们提出的方法可以通过将神经网络应用于接收到的微波阵列信号直接获得乳腺肿瘤的位置,并且避免了任何复杂的图像重建处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验