Suppr超能文献

SALSA-Net:用于压缩感知的可解释深度展开网络。

SALSA-Net: Explainable Deep Unrolling Networks for Compressed Sensing.

机构信息

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China.

Jiangsu Engineering Research Center of Big Data Ubiquitous Perception and Intelligent Agriculture Applications, Zhenjiang 212013, China.

出版信息

Sensors (Basel). 2023 May 28;23(11):5142. doi: 10.3390/s23115142.

Abstract

Deep unrolling networks (DUNs) have emerged as a promising approach for solving compressed sensing (CS) problems due to their superior explainability, speed, and performance compared to classical deep network models. However, the CS performance in terms of efficiency and accuracy remains a principal challenge for approaching further improvements. In this paper, we propose a novel deep unrolling model, SALSA-Net, to solve the image CS problem. The network architecture of SALSA-Net is inspired by unrolling and truncating the split augmented Lagrangian shrinkage algorithm (SALSA) which is used to solve sparsity-induced CS reconstruction problems. SALSA-Net inherits the interpretability of the SALSA algorithm while incorporating the learning ability and fast reconstruction speed of deep neural networks. By converting the SALSA algorithm into a deep network structure, SALSA-Net consists of a gradient update module, a threshold denoising module, and an auxiliary update module. All parameters, including the shrinkage thresholds and gradient steps, are optimized through end-to-end learning and are subject to forward constraints to ensure faster convergence. Furthermore, we introduce learned sampling to replace traditional sampling methods so that the sampling matrix can better preserve the feature information of the original signal and improve sampling efficiency. Experimental results demonstrate that SALSA-Net achieves significant reconstruction performance compared to state-of-the-art methods while inheriting the advantages of explainable recovery and high speed from the DUNs paradigm.

摘要

深度展开网络(DUNs)由于其在可解释性、速度和性能方面优于经典的深度网络模型,因此成为解决压缩感知(CS)问题的一种很有前途的方法。然而,在效率和准确性方面,CS 性能仍然是进一步提高的主要挑战。在本文中,我们提出了一种新颖的深度展开模型 SALSA-Net,用于解决图像 CS 问题。SALSA-Net 的网络架构受到展开和截断分裂增广拉格朗日收缩算法(SALSA)的启发,该算法用于解决稀疏诱导的 CS 重建问题。SALSA-Net 继承了 SALSA 算法的可解释性,同时融入了深度学习网络的学习能力和快速重建速度。通过将 SALSA 算法转换为深度网络结构,SALSA-Net 由梯度更新模块、阈值去噪模块和辅助更新模块组成。所有参数,包括收缩阈值和梯度步长,都通过端到端学习进行优化,并受到前向约束的限制,以确保更快的收敛。此外,我们引入了学习采样来代替传统的采样方法,以便采样矩阵能够更好地保留原始信号的特征信息并提高采样效率。实验结果表明,与最先进的方法相比,SALSA-Net 实现了显著的重建性能,同时继承了 DUNs 范例的可解释性恢复和高速优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f9a/10255077/2f55c7bf2e7a/sensors-23-05142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验