Suppr超能文献

TLR-Net:一种展开网络学习变换张量低秩先验的动态磁共振图像重建方法。

TLR-Net: An unrolling network learning transformed tensor low-rank prior for dynamic MR image reconstruction.

机构信息

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.

School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.

出版信息

Comput Biol Med. 2024 Mar;170:108034. doi: 10.1016/j.compbiomed.2024.108034. Epub 2024 Jan 29.

Abstract

The tensor low-rank prior has attracted considerable attention in dynamic MR reconstruction. Tensor low-rank methods preserve the inherent high-dimensional structure of data, allowing for improved extraction and utilization of intrinsic low-rank characteristics. However, most current methods are still confined to utilizing low-rank structures either in the image domain or predefined transformed domains. Designing an optimal transformation adaptable to dynamic MRI reconstruction through manual efforts is inherently challenging. In this paper, we propose a deep unrolling network that utilizes the convolutional neural network (CNN) to adaptively learn the transformed domain for leveraging tensor low-rank priors. Under the supervised mechanism, the learning of the tensor low-rank domain is directly guided by the reconstruction accuracy. Specifically, we generalize the traditional t-SVD to a transformed version based on arbitrary high-dimensional unitary transformations and introduce a novel unitary transformed tensor nuclear norm (UTNN). Subsequently, we present a dynamic MRI reconstruction model based on UTNN and devise an efficient iterative optimization algorithm using ADMM, which is finally unfolded into the proposed TLR-Net. Experiments on two dynamic cardiac MRI datasets demonstrate that TLR-Net outperforms the state-of-the-art optimization-based and unrolling network-based methods.

摘要

张量低秩先验在动态磁共振重建中引起了相当大的关注。张量低秩方法保留了数据的固有高维结构,允许更好地提取和利用内在的低秩特征。然而,目前大多数方法仍然局限于在图像域或预定义的变换域中利用低秩结构。通过人工努力设计一种自适应动态 MRI 重建的最优变换具有内在的挑战性。在本文中,我们提出了一种深度展开网络,利用卷积神经网络(CNN)自适应地学习变换域,以利用张量低秩先验。在监督机制下,张量低秩域的学习直接由重建精度指导。具体来说,我们将传统的 t-SVD 推广到基于任意高维酉变换的变换版本,并引入了一种新的酉变换张量核范数(UTNN)。随后,我们提出了基于 UTNN 的动态 MRI 重建模型,并设计了一种基于 ADMM 的高效迭代优化算法,最终展开为所提出的 TLR-Net。在两个动态心脏 MRI 数据集上的实验表明,TLR-Net 优于最先进的基于优化和基于展开网络的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验