Suppr超能文献

内容感知可扩展深度压缩感知

Content-Aware Scalable Deep Compressed Sensing.

作者信息

Chen Bin, Zhang Jian

出版信息

IEEE Trans Image Process. 2022;31:5412-5426. doi: 10.1109/TIP.2022.3195319. Epub 2022 Aug 17.

Abstract

To more efficiently address image compressed sensing (CS) problems, we present a novel content-aware scalable network dubbed CASNet which collectively achieves adaptive sampling rate allocation, fine granular scalability and high-quality reconstruction. We first adopt a data-driven saliency detector to evaluate the importance of different image regions and propose a saliency-based block ratio aggregation (BRA) strategy for sampling rate allocation. A unified learnable generating matrix is then developed to produce sampling matrix of any CS ratio with an ordered structure. Being equipped with the optimization-inspired recovery subnet guided by saliency information and a multi-block training scheme preventing blocking artifacts, CASNet jointly reconstructs the image blocks sampled at various sampling rates with one single model. To accelerate training convergence and improve network robustness, we propose an SVD-based initialization scheme and a random transformation enhancement (RTE) strategy, which are extensible without introducing extra parameters. All the CASNet components can be combined and learned end-to-end. We further provide a four-stage implementation for evaluation and practical deployments. Experiments demonstrate that CASNet outperforms other CS networks by a large margin, validating the collaboration and mutual supports among its components and strategies. Codes are available at https://github.com/Guaishou74851/CASNet.

摘要

为了更高效地解决图像压缩感知(CS)问题,我们提出了一种名为CASNet的新型内容感知可扩展网络,该网络共同实现了自适应采样率分配、精细粒度可扩展性和高质量重建。我们首先采用数据驱动的显著性检测器来评估不同图像区域的重要性,并提出一种基于显著性的块比率聚合(BRA)策略用于采样率分配。然后开发了一个统一的可学习生成矩阵,以生成具有有序结构的任意CS比率的采样矩阵。CASNet配备了受优化启发的由显著性信息引导的恢复子网和防止块状伪影的多块训练方案,使用单个模型联合重建以各种采样率采样的图像块。为了加速训练收敛并提高网络鲁棒性,我们提出了一种基于奇异值分解(SVD)的初始化方案和一种随机变换增强(RTE)策略,它们可以在不引入额外参数的情况下进行扩展。所有CASNet组件都可以端到端地组合和学习。我们还提供了一个四阶段实现用于评估和实际部署。实验表明,CASNet在很大程度上优于其他CS网络,验证了其组件和策略之间的协作与相互支持。代码可在https://github.com/Guaishou74851/CASNet获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验