Suppr超能文献

Di-CNN:用于制造质量预测的领域知识感知卷积神经网络。

Di-CNN: Domain-Knowledge-Informed Convolutional Neural Network for Manufacturing Quality Prediction.

机构信息

The School of Manufacturing Systems and Networks, Arizona State University, Mesa, AZ 85212, USA.

Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

出版信息

Sensors (Basel). 2023 Jun 3;23(11):5313. doi: 10.3390/s23115313.

Abstract

In manufacturing, convolutional neural networks (CNNs) are widely used on image sensor data for data-driven process monitoring and quality prediction. However, as purely data-driven models, CNNs do not integrate physical measures or practical considerations into the model structure or training procedure. Consequently, CNNs' prediction accuracy can be limited, and model outputs may be hard to interpret practically. This study aims to leverage manufacturing domain knowledge to improve the accuracy and interpretability of CNNs in quality prediction. A novel CNN model, named Di-CNN, was developed that learns from both design-stage information (such as working condition and operational mode) and real-time sensor data, and adaptively weighs these data sources during model training. It exploits domain knowledge to guide model training, thus improving prediction accuracy and model interpretability. A case study on resistance spot welding, a popular lightweight metal-joining process for automotive manufacturing, compared the performance of (1) a Di-CNN with adaptive weights (the proposed model), (2) a Di-CNN without adaptive weights, and (3) a conventional CNN. The quality prediction results were measured with the mean squared error (MSE) over sixfold cross-validation. Model (1) achieved a mean MSE of 6.8866 and a median MSE of 6.1916, Model (2) achieved 13.6171 and 13.1343, and Model (3) achieved 27.2935 and 25.6117, demonstrating the superior performance of the proposed model.

摘要

在制造业中,卷积神经网络 (CNN) 广泛应用于图像传感器数据,用于数据驱动的过程监测和质量预测。然而,作为纯粹的数据驱动模型,CNN 并未将物理测量或实际考虑因素集成到模型结构或训练过程中。因此,CNN 的预测准确性可能受到限制,并且模型输出在实际应用中可能难以解释。本研究旨在利用制造领域的知识来提高 CNN 在质量预测中的准确性和可解释性。开发了一种名为 Di-CNN 的新型 CNN 模型,它可以从设计阶段的信息(例如工作条件和操作模式)和实时传感器数据中学习,并在模型训练过程中自适应地权衡这些数据源。它利用领域知识来指导模型训练,从而提高预测准确性和模型可解释性。以电阻点焊为例,这是汽车制造中一种流行的轻金属连接工艺,对(1)具有自适应权重的 Di-CNN(所提出的模型)、(2)没有自适应权重的 Di-CNN 和(3)传统 CNN 的性能进行了比较。使用六重交叉验证的均方误差 (MSE) 来衡量质量预测结果。模型 (1) 的平均 MSE 为 6.8866,中位数 MSE 为 6.1916,模型 (2) 的平均 MSE 为 13.6171,中位数 MSE 为 13.1343,模型 (3) 的平均 MSE 为 27.2935,中位数 MSE 为 25.6117,表明所提出的模型具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5b6/10256050/63289dbbf6bc/sensors-23-05313-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验