Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Pathology, 3D Innovation Lab, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands.
Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Pathology, 3D Innovation Lab, Amsterdam Movement Sciences, de Boelelaan 1117, Amsterdam, the Netherlands; Centrum Wiskunde & Informatica (CWI), Science Park 123, Amsterdam, the Netherlands.
Comput Biol Med. 2018 Dec 1;103:130-139. doi: 10.1016/j.compbiomed.2018.10.012. Epub 2018 Oct 16.
The most tedious and time-consuming task in medical additive manufacturing (AM) is image segmentation. The aim of the present study was to develop and train a convolutional neural network (CNN) for bone segmentation in computed tomography (CT) scans.
The CNN was trained with CT scans acquired using six different scanners. Standard tessellation language (STL) models of 20 patients who had previously undergone craniotomy and cranioplasty using additively manufactured skull implants served as "gold standard" models during CNN training. The CNN segmented all patient CT scans using a leave-2-out scheme. All segmented CT scans were converted into STL models and geometrically compared with the gold standard STL models.
The CT scans segmented using the CNN demonstrated a large overlap with the gold standard segmentation and resulted in a mean Dice similarity coefficient of 0.92 ± 0.04. The CNN-based STL models demonstrated mean surface deviations ranging between -0.19 mm ± 0.86 mm and 1.22 mm ± 1.75 mm, when compared to the gold standard STL models. No major differences were observed between the mean deviations of the CNN-based STL models acquired using six different CT scanners.
The fully-automated CNN was able to accurately segment the skull. CNNs thus offer the opportunity of removing the current prohibitive barriers of time and effort during CT image segmentation, making patient-specific AM constructs more accesible.
医学增材制造(AM)中最繁琐和耗时的任务是图像分割。本研究的目的是开发和训练用于 CT 扫描中骨骼分割的卷积神经网络(CNN)。
使用来自六个不同扫描仪的 CT 扫描对 CNN 进行训练。在 CNN 训练过程中,使用先前接受过使用增材制造颅骨植入物进行开颅和颅骨成形术的 20 名患者的计算层析成像(CT)扫描的标准镶嵌语言(STL)模型作为“金标准”模型。CNN 使用“留二出”方案对所有患者的 CT 扫描进行分割。所有分割的 CT 扫描都转换为 STL 模型,并与金标准 STL 模型进行几何比较。
使用 CNN 分割的 CT 扫描与金标准分割有很大的重叠,导致平均骰子相似系数为 0.92±0.04。与金标准 STL 模型相比,基于 CNN 的 STL 模型的平均表面偏差范围在-0.19mm±0.86mm 和 1.22mm±1.75mm 之间。使用六个不同 CT 扫描仪获得的基于 CNN 的 STL 模型的平均偏差之间未观察到明显差异。
全自动 CNN 能够准确分割颅骨。因此,CNN 为消除 CT 图像分割中当前时间和精力方面的障碍提供了机会,使患者特定的 AM 结构更容易获得。