Suppr超能文献

使用在线近红外光谱比较机器学习和偏最小二乘判别分析算法用于榴莲果肉分类

Comparing Machine Learning and PLSDA Algorithms for Durian Pulp Classification Using Inline NIR Spectra.

作者信息

Pokhrel Dharma Raj, Sirisomboon Panmanas, Khurnpoon Lampan, Posom Jetsada, Saechua Wanphut

机构信息

Department of Agricultural Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

出版信息

Sensors (Basel). 2023 Jun 4;23(11):5327. doi: 10.3390/s23115327.

Abstract

The aim of this study was to evaluate and compare the performance of multivariate classification algorithms, specifically Partial Least Squares Discriminant Analysis (PLS-DA) and machine learning algorithms, in the classification of Monthong durian pulp based on its dry matter content (DMC) and soluble solid content (SSC), using the inline acquisition of near-infrared (NIR) spectra. A total of 415 durian pulp samples were collected and analyzed. Raw spectra were preprocessed using five different combinations of spectral preprocessing techniques: Moving Average with Standard Normal Variate (MA+SNV), Savitzky-Golay Smoothing with Standard Normal Variate (SG+SNV), Mean Normalization (SG+MN), Baseline Correction (SG+BC), and Multiplicative Scatter Correction (SG+MSC). The results revealed that the SG+SNV preprocessing technique produced the best performance with both the PLS-DA and machine learning algorithms. The optimized wide neural network algorithm of machine learning achieved the highest overall classification accuracy of 85.3%, outperforming the PLS-DA model, with overall classification accuracy of 81.4%. Additionally, evaluation metrics such as recall, precision, specificity, F1-score, AUC ROC, and kappa were calculated and compared between the two models. The findings of this study demonstrate the potential of machine learning algorithms to provide similar or better performance compared to PLS-DA in classifying Monthong durian pulp based on DMC and SSC using NIR spectroscopy, and they can be applied in the quality control and management of durian pulp production and storage.

摘要

本研究的目的是评估和比较多元分类算法,特别是偏最小二乘判别分析(PLS-DA)和机器学习算法,在基于干物质含量(DMC)和可溶性固形物含量(SSC)对尖竹汶榴莲果肉进行分类时的性能,采用在线采集近红外(NIR)光谱的方法。总共收集并分析了415个榴莲果肉样本。原始光谱使用五种不同的光谱预处理技术组合进行预处理:移动平均与标准正态变量变换(MA+SNV)、Savitzky-Golay平滑与标准正态变量变换(SG+SNV)、均值归一化(SG+MN)、基线校正(SG+BC)和乘法散射校正(SG+MSC)。结果表明,SG+SNV预处理技术在PLS-DA和机器学习算法中均表现出最佳性能。机器学习的优化宽神经网络算法实现了最高的总体分类准确率85.3%,优于PLS-DA模型,其总体分类准确率为81.4%。此外,还计算并比较了两个模型之间的召回率、精确率、特异性、F1分数、AUC ROC和kappa等评估指标。本研究结果表明,在使用近红外光谱基于DMC和SSC对尖竹汶榴莲果肉进行分类时,机器学习算法具有与PLS-DA相似或更好性能的潜力,并且可应用于榴莲果肉生产和储存的质量控制与管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc3/10256041/e369907e8298/sensors-23-05327-g001.jpg

相似文献

5
PLS-DA and Vis-NIR spectroscopy based discrimination of abdominal tissues of female rabbits.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Apr 15;271:120887. doi: 10.1016/j.saa.2022.120887. Epub 2022 Jan 11.
7
Discrimination of internal crack for rice seeds using near infrared spectroscopy.
Spectrochim Acta A Mol Biomol Spectrosc. 2024 Oct 15;319:124578. doi: 10.1016/j.saa.2024.124578. Epub 2024 Jun 1.
10
Visible/near-infrared hyperspectral imaging combined with machine learning for identification of ten species.
Front Plant Sci. 2024 May 31;15:1413215. doi: 10.3389/fpls.2024.1413215. eCollection 2024.

引用本文的文献

2
Accurate and visualiable discrimination of Chenpi age using 2D-CNN and Grad-CAM++ based on infrared spectral images.
Food Chem X. 2024 Aug 22;23:101759. doi: 10.1016/j.fochx.2024.101759. eCollection 2024 Oct 30.
3
Cotton-Net: efficient and accurate rapid detection of impurity content in machine-picked seed cotton using near-infrared spectroscopy.
Front Plant Sci. 2024 Jan 25;15:1334961. doi: 10.3389/fpls.2024.1334961. eCollection 2024.

本文引用的文献

4
Comparison of MPL-ANN and PLS-DA models for predicting the severity of patients with acute pancreatitis: An exploratory study.
Am J Emerg Med. 2021 Jun;44:85-91. doi: 10.1016/j.ajem.2021.01.044. Epub 2021 Jan 22.
8
Durian Fruits Discovered as Superior Folate Sources.
Front Nutr. 2018 Nov 28;5:114. doi: 10.3389/fnut.2018.00114. eCollection 2018.
10
Artificial intelligence and deep learning - Radiology's next frontier?
Clin Imaging. 2018 May-Jun;49:87-88. doi: 10.1016/j.clinimag.2017.11.007. Epub 2017 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验