Suppr超能文献

基于红外光谱图像,使用二维卷积神经网络(2D-CNN)和梯度加权类激活映射(Grad-CAM++)对陈皮年份进行准确且可视化的鉴别。

Accurate and visualiable discrimination of Chenpi age using 2D-CNN and Grad-CAM++ based on infrared spectral images.

作者信息

Tang Li Jun, Li Xin Kang, Huang Yue, Zhang Xiang-Zhi, Li Bao Qiong

机构信息

School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.

出版信息

Food Chem X. 2024 Aug 22;23:101759. doi: 10.1016/j.fochx.2024.101759. eCollection 2024 Oct 30.

Abstract

Dried tangerine peel ("Chenpi"), has numerous clinical and nutritional benefits, with its quality being significantly influenced by its storage age, referred to as "Chen Jiu Zhe Liang" in Chinese. Concequently, the rapid and accurate identification of Chenpi's age is important for consumers. In this study, Fourier transform infrared spectroscopy (FTIR) was employed to capture spectral images of Chenpi. These FTIR images were then analyzed using a two-dimensional convolutional neural networks (2D-CNN) model, achieving a discrimination accuracy of 97.92%. To address the "black box" nature of the 2D-CNN, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) was utilized to highlight the important regions contributing to the model's performance. Additionally, six other machine learning models were developped using features identified by the 2D-CNN to validate their effectiveness. The results demonstrated that the combination of FTIR spectral images and 2D-CNN provides a highly effective method for accurately determining the age of Chenpi.

摘要

陈皮具有众多临床和营养益处,其品质受储存年份的显著影响,中文称之为“陈久者良”。因此,快速准确地鉴别陈皮的年份对消费者而言至关重要。在本研究中,采用傅里叶变换红外光谱(FTIR)获取陈皮的光谱图像。然后使用二维卷积神经网络(2D-CNN)模型对这些FTIR图像进行分析,鉴别准确率达到了97.92%。为解决2D-CNN的“黑箱”特性问题,利用梯度加权类激活映射升级版(Grad-CAM++)突出对模型性能有贡献的重要区域。此外,利用2D-CNN识别出的特征开发了其他六种机器学习模型,以验证其有效性。结果表明,FTIR光谱图像与2D-CNN的结合为准确测定陈皮年份提供了一种高效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验