Asano Takayuki, Yasuda Asako, Kinoshita Setsuo, Tanaka Toshiro, Sahara Toru, Tanaka Toshimitsu, Homma Akira, Shigeta Masahiro
Nippontect Systems Corporation.
Department of Psychiatry, The Jikei University School of Medicine.
Nihon Ronen Igakkai Zasshi. 2024;61(3):337-344. doi: 10.3143/geriatrics.61.337.
An easy-to-use tool that can detect cognitive decline in mild cognitive impairment (MCI) is required. In this study, we aimed to construct a machine learning model that discriminates between MCI and cognitively normal (CN) individuals using spoken answers to questions and speech features.
Participants of ≥50 years of age were recruited from the Silver Human Resource Center. The Japanese Version of the Mini-Mental State Examination (MMSE-J) and Clinical Dementia Rating (CDR) were used to obtain clinical information. We developed a research application that presented neuropsychological tasks via automated voice guidance and collected the participants' spoken answers. The neuropsychological tasks included time orientation, sentence memory tasks (immediate and delayed recall), and digit span memory-updating tasks. Scores and speech features were obtained from spoken answers. Subsequently, a machine learning model was constructed to classify MCI and CN using various classifiers, combining the participants' age, gender, scores, and speech features.
We obtained a model using Gaussian Naive Bayes, which classified typical MCI (CDR 0.5, MMSE ≤26) and typical CN (CDR 0 and MMSE ≥29) with an area under the curve (AUC) of 0.866 (accuracy 0.75, sensitivity 0.857, specificity 0.712).
We built a machine learning model that can classify MCI and CN using spoken answers to neuropsychological questions. Easy-to-use MCI detection tools could be developed by incorporating this model into smartphone applications and telephone services.
需要一种易于使用的工具来检测轻度认知障碍(MCI)中的认知衰退。在本研究中,我们旨在构建一种机器学习模型,该模型使用对问题的口头回答和语音特征来区分MCI个体和认知正常(CN)个体。
从银色人力资源中心招募年龄≥50岁的参与者。使用日语版简易精神状态检查表(MMSE-J)和临床痴呆评定量表(CDR)来获取临床信息。我们开发了一个研究应用程序,该程序通过自动语音引导呈现神经心理学任务,并收集参与者的口头回答。神经心理学任务包括时间定向、句子记忆任务(即时和延迟回忆)以及数字广度记忆更新任务。从口头回答中获取分数和语音特征。随后,构建了一个机器学习模型,使用各种分类器对MCI和CN进行分类,结合参与者的年龄、性别、分数和语音特征。
我们使用高斯朴素贝叶斯获得了一个模型,该模型对典型MCI(CDR 0.5,MMSE≤26)和典型CN(CDR 0且MMSE≥29)进行分类,曲线下面积(AUC)为0.866(准确率0.75,灵敏度0.857,特异性0.712)。
我们构建了一种机器学习模型,该模型可以使用对神经心理学问题的口头回答对MCI和CN进行分类。通过将该模型整合到智能手机应用程序和电话服务中,可以开发出易于使用的MCI检测工具。