Suppr超能文献

NR5G-SAM:一种基于 5G 新无线电的现场机器人应用的 SLAM 框架。

NR5G-SAM: A SLAM Framework for Field Robot Applications Based on 5G New Radio.

机构信息

Ingeniarius Ltd., R. Nossa Sra. Conceição 146, 4445-147 Alfena, Portugal.

Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal.

出版信息

Sensors (Basel). 2023 Jun 5;23(11):5354. doi: 10.3390/s23115354.

Abstract

Robot localization is a crucial task in robotic systems and is a pre-requisite for navigation. In outdoor environments, Global Navigation Satellite Systems (GNSS) have aided towards this direction, alongside laser and visual sensing. Despite their application in the field, GNSS suffers from limited availability in dense urban and rural environments. Light Detection and Ranging (LiDAR), inertial and visual methods are also prone to drift and can be susceptible to outliers due to environmental changes and illumination conditions. In this work, we propose a cellular Simultaneous Localization and Mapping (SLAM) framework based on 5G New Radio (NR) signals and inertial measurements for mobile robot localization with several gNodeB stations. The method outputs the pose of the robot along with a radio signal map based on the Received Signal Strength Indicator (RSSI) measurements for correction purposes. We then perform benchmarking against LiDAR-Inertial Odometry Smoothing and Mapping (LIO-SAM), a state-of-the-art LiDAR SLAM method, comparing performance via a simulator ground truth reference. Two experimental setups are presented and discussed using the sub-6 GHz and mmWave frequency bands for communication, while the transmission is based on down-link (DL) signals. Our results show that 5G positioning can be utilized for radio SLAM, providing increased robustness in outdoor environments and demonstrating its potential to assist in robot localization, as an additional absolute source of information when LiDAR methods fail and GNSS data is unreliable.

摘要

机器人定位是机器人系统中的一项关键任务,也是导航的前提。在户外环境中,全球导航卫星系统 (GNSS) 与激光和视觉传感一起为这一方向提供了帮助。尽管 GNSS 在该领域得到了应用,但它在密集的城市和农村环境中可用性有限。光探测和测距 (LiDAR)、惯性和视觉方法也容易出现漂移,并且由于环境变化和照明条件,可能容易受到异常值的影响。在这项工作中,我们提出了一种基于 5G 新无线电 (NR) 信号和惯性测量的蜂窝式同时定位与建图 (SLAM) 框架,用于具有多个 gNodeB 站的移动机器人定位。该方法输出机器人的姿态以及基于接收信号强度指示 (RSSI) 测量值的无线电信号图,以便进行校正。然后,我们通过使用模拟器地面真值参考与激光惯性里程计平滑和建图 (LIO-SAM) 进行基准测试,这是一种最先进的激光 SLAM 方法,比较性能。提出并讨论了两种实验设置,分别使用 6GHz 以下和毫米波频段进行通信,而传输则基于下行链路 (DL) 信号。我们的结果表明,5G 定位可用于无线电 SLAM,在户外环境中提供更高的鲁棒性,并展示了其在机器人定位方面的潜力,作为激光方法失效和 GNSS 数据不可靠时的附加绝对信息源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44bc/10256012/cdccaceb7f08/sensors-23-05354-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验