Duncan C J R, Kaemingk M, Li W H, Andorf M B, Bartnik A C, Galdi A, Gordon M, Pennington C A, Bazarov I V, Zeng H J, Liu F, Luo D, Sood A, Lindenberg A M, Tate M W, Muller D A, Thom-Levy J, Gruner S M, Maxson J M
Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA.
Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, NY 14850, USA.
Ultramicroscopy. 2023 Nov;253:113771. doi: 10.1016/j.ultramic.2023.113771. Epub 2023 Jun 5.
Ultrafast-optical-pump - structural-probe measurements, including ultrafast electron and x-ray scattering, provide direct experimental access to the fundamental timescales of atomic motion, and are thus foundational techniques for studying matter out of equilibrium. High-performance detectors are needed in scattering experiments to obtain maximum scientific value from every probe particle. We deploy a hybrid pixel array direct electron detector to perform ultrafast electron diffraction experiments on a WSe/MoSe 2D heterobilayer, resolving the weak features of diffuse scattering and moiré superlattice structure without saturating the zero order peak. Enabled by the detector's high frame rate, we show that a chopping technique provides diffraction difference images with signal-to-noise at the shot noise limit. Finally, we demonstrate that a fast detector frame rate coupled with a high repetition rate probe can provide continuous time resolution from femtoseconds to seconds, enabling us to perform a scanning ultrafast electron diffraction experiment that maps thermal transport in WSe/MoSe and resolves distinct diffusion mechanisms in space and time.
超快光泵浦-结构探测测量,包括超快电子和X射线散射,为原子运动的基本时间尺度提供了直接的实验途径,因此是研究非平衡态物质的基础技术。散射实验需要高性能探测器,以便从每个探测粒子中获取最大的科学价值。我们部署了一种混合像素阵列直接电子探测器,对WSe/MoSe 2D异质双层进行超快电子衍射实验,解析了漫散射和莫尔超晶格结构的微弱特征,而不会使零阶峰饱和。得益于探测器的高帧率,我们表明一种斩波技术能够提供在散粒噪声极限下具有信噪比的衍射差异图像。最后,我们证明快速探测器帧率与高重复率探针相结合,可以提供从飞秒到秒的连续时间分辨率,使我们能够进行扫描超快电子衍射实验,绘制WSe/MoSe中的热传输图,并解析空间和时间上不同的扩散机制。