Suppr超能文献

水下体感展示了中性浮力作为微重力模拟的局限性。

Vection underwater illustrates the limitations of neutral buoyancy as a microgravity analog.

作者信息

Bury Nils-Alexander, Jenkin Michael, Allison Robert S, Herpers Rainer, Harris Laurence R

机构信息

Institute of Visual Computing, Hochschule Bonn-Rhein-Sieg, Grantham-Allee 20, 53757, St. Augustin, Germany.

Centre for Vision Research, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.

出版信息

NPJ Microgravity. 2023 Jun 10;9(1):42. doi: 10.1038/s41526-023-00282-3.

Abstract

Neutral buoyancy has been used as an analog for microgravity from the earliest days of human spaceflight. Compared to other options on Earth, neutral buoyancy is relatively inexpensive and presents little danger to astronauts while simulating some aspects of microgravity. Neutral buoyancy removes somatosensory cues to the direction of gravity but leaves vestibular cues intact. Removal of both somatosensory and direction of gravity cues while floating in microgravity or using virtual reality to establish conflicts between them has been shown to affect the perception of distance traveled in response to visual motion (vection) and the perception of distance. Does removal of somatosensory cues alone by neutral buoyancy similarly impact these perceptions? During neutral buoyancy we found no significant difference in either perceived distance traveled nor perceived size relative to Earth-normal conditions. This contrasts with differences in linear vection reported between short- and long-duration microgravity and Earth-normal conditions. These results indicate that neutral buoyancy is not an effective analog for microgravity for these perceptual effects.

摘要

自人类太空飞行早期以来,中性浮力就一直被用作微重力的模拟环境。与地球上的其他选择相比,中性浮力相对便宜,并且在模拟微重力的某些方面时对宇航员几乎没有危险。中性浮力消除了重力方向的体感线索,但保留了前庭线索。在微重力环境中漂浮或使用虚拟现实来制造两者之间的冲突时,同时消除体感和重力方向线索已被证明会影响对视觉运动(平移)响应的行进距离感知和距离感知。仅通过中性浮力消除体感线索是否同样会影响这些感知呢?在中性浮力环境下,我们发现与地球正常条件相比,在感知的行进距离或感知大小方面均无显著差异。这与短期和长期微重力与地球正常条件之间报告的线性平移差异形成对比。这些结果表明,对于这些感知效应而言,中性浮力并非微重力的有效模拟环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6706/10257652/7b8f7de2cf73/41526_2023_282_Fig1_HTML.jpg

相似文献

1
Vection underwater illustrates the limitations of neutral buoyancy as a microgravity analog.
NPJ Microgravity. 2023 Jun 10;9(1):42. doi: 10.1038/s41526-023-00282-3.
2
Neutral buoyancy and the static perception of upright.
NPJ Microgravity. 2023 Jun 28;9(1):52. doi: 10.1038/s41526-023-00296-x.
4
Perception of smooth and perturbed vection in short-duration microgravity.
Exp Brain Res. 2012 Dec;223(4):479-87. doi: 10.1007/s00221-012-3275-5. Epub 2012 Oct 2.
5
Enhancing visual cues to orientation: suggestions for space travelers and the elderly.
Prog Brain Res. 2011;191:133-42. doi: 10.1016/B978-0-444-53752-2.00008-4.
6
Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.
Neuroscience. 2016 Jul 7;327:125-35. doi: 10.1016/j.neuroscience.2016.04.014. Epub 2016 Apr 16.
8
The impact of gravity on perceived object height.
NPJ Microgravity. 2024 Oct 4;10(1):95. doi: 10.1038/s41526-024-00430-3.
9
The effect of long-term exposure to microgravity on the perception of upright.
NPJ Microgravity. 2017 Jan 12;3:3. doi: 10.1038/s41526-016-0005-5. eCollection 2017.
10
Relationship between selected orientation rest frame, circular vection and space motion sickness.
Brain Res Bull. 1998 Nov 15;47(5):497-501. doi: 10.1016/s0361-9230(98)00096-3.

引用本文的文献

1
The effect of vection on the use of optic flow cues.
R Soc Open Sci. 2025 Jul 23;12(7):250364. doi: 10.1098/rsos.250364. eCollection 2025 Jul.
2
The impact of gravity on perceived object height.
NPJ Microgravity. 2024 Oct 4;10(1):95. doi: 10.1038/s41526-024-00430-3.

本文引用的文献

2
The effect of water immersion on vection in virtual reality.
Sci Rep. 2021 Jan 13;11(1):1022. doi: 10.1038/s41598-020-80100-y.
3
When gravity is not where it should be: How perceived orientation affects visual self-motion processing.
PLoS One. 2021 Jan 6;16(1):e0243381. doi: 10.1371/journal.pone.0243381. eCollection 2021.
4
The gravitational imprint on sensorimotor planning and control.
J Neurophysiol. 2020 Jul 1;124(1):4-19. doi: 10.1152/jn.00381.2019. Epub 2020 Apr 29.
5
Horizontal and Vertical Distance Perception in Altered Gravity.
Sci Rep. 2020 Mar 25;10(1):5471. doi: 10.1038/s41598-020-62405-0.
6
Vestibular and Multi-Sensory Influences Upon Self-Motion Perception and the Consequences for Human Behavior.
Front Neurol. 2019 Mar 7;10:63. doi: 10.3389/fneur.2019.00063. eCollection 2019.
7
Changes in Posture Following a Single Session of Long-Duration Water Immersion.
J Appl Biomech. 2018 Dec 1;34(6):435-441. doi: 10.1123/jab.2017-0181.
8
Practicing for space underwater: inventing neutral buoyancy training, 1963-1968.
Endeavour. 2015 Sep-Dec;39(3-4):147-59. doi: 10.1016/j.endeavour.2015.05.006. Epub 2015 Jul 15.
10
Distance and Size Perception in Astronauts during Long-Duration Spaceflight.
Life (Basel). 2013 Dec 13;3(4):524-37. doi: 10.3390/life3040524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验