Fraboul Jules, Biroli Giulio, De Monte Silvia
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France.
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, F-75005, France.
J Theor Biol. 2023 Aug 21;571:111557. doi: 10.1016/j.jtbi.2023.111557. Epub 2023 Jun 9.
Species-rich communities, such as the microbiota or microbial ecosystems, provide key functions for human health and climatic resilience. Increasing effort is being dedicated to design experimental protocols for selecting community-level functions of interest. These experiments typically involve selection acting on populations of communities, each of which is composed of multiple species. If numerical simulations started to explore the evolutionary dynamics of this complex, multi-scale system, a comprehensive theoretical understanding of the process of artificial selection of communities is still lacking. Here, we propose a general model for the evolutionary dynamics of communities composed of a large number of interacting species, described by disordered generalised Lotka-Volterra equations. Our analytical and numerical results reveal that selection for scalar community functions leads to the emergence, along an evolutionary trajectory, of a low-dimensional structure in an initially featureless interaction matrix. Such structure reflects the combination of the properties of the ancestral community and of the selective pressure. Our analysis determines how the speed of adaptation scales with the system parameters and the abundance distribution of the evolved communities. Artificial selection for larger total abundance is thus shown to drive increased levels of mutualism and interaction diversity. Inference of the interaction matrix is proposed as a method to assess the emergence of structured interactions from experimentally accessible measures.
物种丰富的群落,如微生物群或微生物生态系统,为人类健康和气候适应能力提供关键功能。人们正在加大力度设计实验方案,以选择感兴趣的群落水平功能。这些实验通常涉及对群落种群进行选择,每个群落由多个物种组成。虽然数值模拟已开始探索这个复杂多尺度系统的进化动态,但对群落人工选择过程仍缺乏全面的理论理解。在此,我们提出一个由大量相互作用物种组成的群落进化动态的通用模型,用无序广义Lotka-Volterra方程描述。我们的分析和数值结果表明,对标量群落功能的选择会导致在初始无特征的相互作用矩阵中,沿着进化轨迹出现低维结构。这种结构反映了原始群落特性与选择压力的结合。我们的分析确定了适应速度如何随系统参数和进化群落的丰度分布而变化。因此,对更大总丰度的人工选择被证明会推动互利共生水平和相互作用多样性的增加。我们提出将相互作用矩阵的推断作为一种从实验可获取的测量中评估结构化相互作用出现的方法。