Suppr超能文献

在用于种群动态的状态空间模型中结合具有不同偏差的多个数据源。

Combining multiple data sources with different biases in state-space models for population dynamics.

作者信息

Polansky Leo, Mitchell Lara, Newman Ken B

机构信息

U.S. Fish and Wildlife Service Sacramento California USA.

U.S. Fish and Wildlife Service Lodi California USA.

出版信息

Ecol Evol. 2023 Jun 8;13(6):e10154. doi: 10.1002/ece3.10154. eCollection 2023 Jun.

Abstract

The resolution at which animal populations can be modeled can be increased when multiple datasets corresponding to different life stages are available, allowing, for example, seasonal instead of annual descriptions of dynamics. However, the abundance estimates used for model fitting can have multiple sources of error, both random and systematic, namely bias. We focus here on the consequences of, and how to address, differing and unknown observation biases when fitting models.State-space models (SSMs) separate process variation and observation error, thus providing a framework to account for different and unknown estimate biases across multiple datasets. Here we study the effects on the inference of including or excluding bias parameters for a sequential life stage population dynamics SSM using a combination of theory, simulation experiments, and an empirical example.When the data, that is, abundance estimates, are unbiased, including bias parameters leads to increased imprecision compared to a model that correctly excludes bias parameters. But when observations are biased and no bias parameters are estimated, recruitment and survival processes are inaccurately estimated and estimates of process variance become biased high. These problems are substantially reduced by including bias parameters and fixing one of them at even an incorrect value. The primary inferential challenge is that models with bias parameters can show properties of being parameter redundant even when they are not in theory.Combining multiple datasets into a single analysis by using bias parameters to rescale data can offer significant improvements to inference and model diagnostics. Because their estimability in practice is dataset specific and will likely require more precise estimates than might be expected from ecological datasets, we outline some strategies for characterizing process uncertainty when it is confounded by bias parameters.

摘要

当有对应不同生命阶段的多个数据集时,对动物种群进行建模的分辨率可以提高,例如可以按季节而非年度来描述动态变化。然而,用于模型拟合的丰度估计可能存在多种误差来源,包括随机误差和系统误差,即偏差。我们在此关注在拟合模型时不同的和未知的观测偏差的后果以及如何处理这些偏差。状态空间模型(SSMs)将过程变化和观测误差分开,从而提供了一个框架来解释多个数据集中不同的和未知的估计偏差。在这里,我们结合理论、模拟实验和一个实证例子,研究在一个连续生命阶段种群动态的状态空间模型中纳入或排除偏差参数对推断的影响。当数据,即丰度估计是无偏差的时,与正确排除偏差参数的模型相比,纳入偏差参数会导致精度降低。但是当观测存在偏差且未估计偏差参数时,补充和存活过程会被不准确地估计,并且过程方差的估计会偏高。通过纳入偏差参数并将其中一个固定在即使是不正确的值,这些问题会大大减少。主要的推断挑战在于,带有偏差参数的模型即使在理论上并非参数冗余,也可能表现出参数冗余的特性。通过使用偏差参数重新缩放数据将多个数据集合并到单一分析中,可以显著改进推断和模型诊断。由于它们在实际中的可估计性因数据集而异,并且可能需要比生态数据集预期的更精确的估计,我们概述了一些在过程不确定性与偏差参数混淆时表征过程不确定性的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e1/10249046/6c4f1fbef332/ECE3-13-e10154-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验