Cole Diana J, McCrea Rachel S
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF, England.
Biom J. 2016 Sep;58(5):1071-90. doi: 10.1002/bimj.201400239. Epub 2016 Jun 30.
Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant.
离散状态空间模型在生态学中用于描述野生动物种群的动态,其参数(如生存概率)具有生态学意义。对于模型的特定参数化,并非总是清楚哪些参数可以估计。这种无法估计所有参数的情况被称为参数冗余,或者说该模型被描述为不可识别。在本文中,我们开发了可用于检测离散状态空间模型中参数冗余的方法。一个详尽的总结是完全指定一个模型的参数组合。为了使用检测参数冗余的通用方法,需要一个合适的详尽总结。本文提出了两种方法,利用连续状态空间模型方法的离散类似物来推导离散状态空间模型的详尽总结。我们还证明,通过使用综合种群模型合并多个数据集,可能会得到一个所有参数都可估计的模型,即使拟合单独数据集的模型可能存在参数冗余。