Suppr超能文献

离散状态空间模型和综合模型中的参数冗余

Parameter redundancy in discrete state-space and integrated models.

作者信息

Cole Diana J, McCrea Rachel S

机构信息

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF, England.

出版信息

Biom J. 2016 Sep;58(5):1071-90. doi: 10.1002/bimj.201400239. Epub 2016 Jun 30.

Abstract

Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant.

摘要

离散状态空间模型在生态学中用于描述野生动物种群的动态,其参数(如生存概率)具有生态学意义。对于模型的特定参数化,并非总是清楚哪些参数可以估计。这种无法估计所有参数的情况被称为参数冗余,或者说该模型被描述为不可识别。在本文中,我们开发了可用于检测离散状态空间模型中参数冗余的方法。一个详尽的总结是完全指定一个模型的参数组合。为了使用检测参数冗余的通用方法,需要一个合适的详尽总结。本文提出了两种方法,利用连续状态空间模型方法的离散类似物来推导离散状态空间模型的详尽总结。我们还证明,通过使用综合种群模型合并多个数据集,可能会得到一个所有参数都可估计的模型,即使拟合单独数据集的模型可能存在参数冗余。

相似文献

2
Parameter redundancy in Jolly-Seber tag loss models.乔利-西伯标记损失模型中的参数冗余
Ecol Evol. 2021 Jan 13;11(3):1131-1149. doi: 10.1002/ece3.7035. eCollection 2021 Feb.
3
Parameter redundancy in mark-recovery models.标记重捕模型中的参数冗余
Biom J. 2012 Jul;54(4):507-23. doi: 10.1002/bimj.201100210. Epub 2012 Jun 12.
7
Determining the parametric structure of models.确定模型的参数结构。
Math Biosci. 2010 Nov;228(1):16-30. doi: 10.1016/j.mbs.2010.08.004. Epub 2010 Aug 25.

本文引用的文献

1
Parameter redundancy in mark-recovery models.标记重捕模型中的参数冗余
Biom J. 2012 Jul;54(4):507-23. doi: 10.1002/bimj.201100210. Epub 2012 Jun 12.
2
A hybrid symbolic-numerical method for determining model structure.一种用于确定模型结构的混合符号数值方法。
Math Biosci. 2012 Apr;236(2):117-25. doi: 10.1016/j.mbs.2012.02.002. Epub 2012 Feb 23.
4
Determining the parametric structure of models.确定模型的参数结构。
Math Biosci. 2010 Nov;228(1):16-30. doi: 10.1016/j.mbs.2010.08.004. Epub 2010 Aug 25.
9
Latent class model diagnosis.潜在类别模型诊断
Biometrics. 2000 Dec;56(4):1055-67. doi: 10.1111/j.0006-341x.2000.01055.x.
10
Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems.
Math Biosci. 2000 Dec;168(2):137-59. doi: 10.1016/s0025-5564(00)00047-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验