Suppr超能文献

用于从空间重复计数估计种群大小的N-混合模型。

N-mixture models for estimating population size from spatially replicated counts.

作者信息

Royle J Andrew

机构信息

Division of Migratory Bird Management, U.S. Fish and Wildlife Service, 11510 American Holly Drive, Laurel, Maryland 20708, USA.

出版信息

Biometrics. 2004 Mar;60(1):108-15. doi: 10.1111/j.0006-341X.2004.00142.x.

Abstract

Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, N, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for N. Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on N that is exploited by the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

摘要

空间重复是动物数量调查中的一个常见主题。此类调查通常会产生稀疏的计数数据,从中难以在正式考虑检测概率的同时估计种群大小。在本文中,我描述了一类模型(N - 混合模型),该模型允许从此类数据中估计种群大小。关键思想是将特定地点的种群大小N视为根据某种混合分布(例如泊松分布)分布的独立随机变量。先验参数是从数据的边际似然估计出来的,其中对N的先验分布进行了积分。卡罗尔和隆巴德(1985年,《美国统计协会杂志》80卷,423 - 426页)提出了一类基于对检测概率的先验分布进行混合的估计器。他们的估计器可以在有限的情况下应用,但对先验固定的先验参数值很敏感。空间重复提供了有关N的先验分布参数的额外信息,N - 混合模型利用了这些信息,并能从稀疏数据中得出合理的丰度估计。一项模拟研究表明,与卡罗尔和隆巴德估计器相比,N - 混合估计器具有更优的操作特性(偏差、置信区间覆盖范围)。这两种估计器都应用于六种鸟类的点计数数据,结果表明对p的先验选择很敏感,并且丰度估计存在显著差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验