RedTell:一种用于红细胞形态可解释性分析的人工智能工具。
RedTell: an AI tool for interpretable analysis of red blood cell morphology.
作者信息
Sadafi Ario, Bordukova Maria, Makhro Asya, Navab Nassir, Bogdanova Anna, Marr Carsten
机构信息
Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany.
出版信息
Front Physiol. 2023 May 26;14:1058720. doi: 10.3389/fphys.2023.1058720. eCollection 2023.
Hematologists analyze microscopic images of red blood cells to study their morphology and functionality, detect disorders and search for drugs. However, accurate analysis of a large number of red blood cells needs automated computational approaches that rely on annotated datasets, expensive computational resources, and computer science expertise. We introduce RedTell, an AI tool for the interpretable analysis of red blood cell morphology comprising four single-cell modules: segmentation, feature extraction, assistance in data annotation, and classification. Cell segmentation is performed by a trained Mask R-CNN working robustly on a wide range of datasets requiring no or minimum fine-tuning. Over 130 features that are regularly used in research are extracted for every detected red blood cell. If required, users can train task-specific, highly accurate decision tree-based classifiers to categorize cells, requiring a minimal number of annotations and providing interpretable feature importance. We demonstrate RedTell's applicability and power in three case studies. In the first case study we analyze the difference of the extracted features between the cells coming from patients suffering from different diseases, in the second study we use RedTell to analyze the control samples and use the extracted features to classify cells into echinocytes, discocytes and stomatocytes and finally in the last use case we distinguish sickle cells in sickle cell disease patients. We believe that RedTell can accelerate and standardize red blood cell research and help gain new insights into mechanisms, diagnosis, and treatment of red blood cell associated disorders.
血液学家通过分析红细胞的微观图像来研究其形态和功能,检测疾病并寻找药物。然而,对大量红细胞进行准确分析需要依赖注释数据集、昂贵的计算资源和计算机科学专业知识的自动化计算方法。我们介绍了RedTell,这是一种用于红细胞形态可解释分析的人工智能工具,它由四个单细胞模块组成:分割、特征提取、数据注释辅助和分类。细胞分割由经过训练的Mask R-CNN执行,该网络在各种数据集上都能稳健运行,无需或只需进行最少的微调。为每个检测到的红细胞提取130多个研究中常用的特征。如果需要,用户可以训练特定任务的、基于决策树的高精度分类器来对细胞进行分类,这种分类器只需要最少数量的注释,并能提供可解释的特征重要性。我们在三个案例研究中展示了RedTell的适用性和强大功能。在第一个案例研究中,我们分析了来自不同疾病患者的细胞之间提取特征的差异;在第二个研究中,我们使用RedTell分析对照样本,并利用提取的特征将细胞分类为棘状红细胞、盘状红细胞和口形红细胞;最后在最后一个用例中,我们区分镰状细胞病患者中的镰状细胞。我们相信RedTell可以加速和规范红细胞研究,并有助于深入了解红细胞相关疾病的机制、诊断和治疗。