Boecker Clemens, Halblaub Miranda Jose Luis, Klüter Harald, Suhr Hajo, Bieback Karen, Wiedemann Philipp
Department of Biotechnology, Mannheim University of Applied Sciences, Mannheim, Germany.
Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Transfus Med Hemother. 2024 Aug 22;52(3):190-201. doi: 10.1159/000539882. eCollection 2025 Jun.
Red blood cells (RBCs) undergo progressive biochemical and morphological changes during storage, collectively called storage lesion. The quality of red cell concentrates (RCCs) is typically assessed by quantifying hemolysis. An assessment of morphological changes, associated with low quality RBCs, could give an additional indication of the safety and efficacy of the concentrates. The current standard for determining morphological changes is a manual, laborious, and subjectively biased microscopic process that limits the number of cells that can be examined. When using alternative methods like flow cells, flow and shear-induced morphologies affecting especially stomatocyte morphologies must be taken into account. We already established an automated flow morphometric RBC analysis system as an alternative to manual microscopic evaluation. The goal of the present work is to obtain a robust, automated, morphology-related signal (lesion index) quantifying RBC storage lesion in a laminar flow channel under conditions similar to stasis that is not affected by shear-induced reversible morphology changes.
We use a convolutional neural network (CNN) for high throughput classification of RBCs. We analyzed the morphological changes of 5 RCCs over a period of 12 weeks and classified RBC morphologies, including such that are degradation-induced and reversible. We introduce a lesion index to denote the percentage of irreversible spherical morphologies, known to reduce the post-transfusion survival of erythrocytes. We further addressed shear-induced stomatocyte morphologies in laminar flow and whether these affect CNN-based RBC classification.
Our flow morphometry system achieves a high-resolution classification comprising nine morphological classes with an excellent overall accuracy of 92% and F scores between 84% and 97%. We generate strong evidence that the morphological lesion index can predict the hemolysis level in RCCs during storage. The power of this new classification technique allowed it, for the first time, to detect and measure the lateral concentration gradient of stomatocytes in a conventional flow chamber. Importantly, we show that reversible shear rate-induced morphologies, typical for microfluidic systems, bear no influence on the lesion index.
Flow morphometry combined with evaluation by a CNN allows to reliably assess RBC storage lesion and thus concentrate quality. Additionally, this method reduces the need for complex laboratory procedures.
红细胞(RBCs)在储存过程中会经历渐进性的生化和形态学变化,统称为储存损伤。红细胞浓缩物(RCCs)的质量通常通过定量溶血来评估。对与低质量红细胞相关的形态学变化进行评估,可为浓缩物的安全性和有效性提供额外的指标。目前用于确定形态学变化的标准是一个手动、费力且存在主观偏差的显微镜检查过程,这限制了可检查的细胞数量。当使用诸如流动细胞等替代方法时,必须考虑流动和剪切诱导的形态,尤其是对口形红细胞形态的影响。我们已经建立了一种自动化的流动形态计量红细胞分析系统,作为手动显微镜评估的替代方法。本研究的目的是在类似于血液停滞的条件下,在层流通道中获得一种强大的、自动化的、与形态相关的信号(损伤指数),以量化红细胞储存损伤,且该信号不受剪切诱导的可逆形态变化的影响。
我们使用卷积神经网络(CNN)对红细胞进行高通量分类。我们分析了5份红细胞浓缩物在12周内的形态变化,并对红细胞形态进行分类,包括降解诱导型和可逆型。我们引入一个损伤指数来表示不可逆球形形态的百分比,已知这种形态会降低红细胞的输血后存活率。我们进一步研究了层流中剪切诱导的口形红细胞形态,以及这些形态是否会影响基于CNN的红细胞分类。
我们的流动形态计量系统实现了高分辨率分类,包括九个形态类别,总体准确率高达92%,F分数在84%至97%之间。我们提供了有力证据表明,形态损伤指数可以预测红细胞浓缩物在储存期间的溶血水平。这种新分类技术的强大功能使其首次能够检测和测量传统流动腔中口形红细胞的横向浓度梯度。重要的是,我们表明微流控系统中典型的可逆剪切速率诱导形态对损伤指数没有影响。
流动形态计量学与CNN评估相结合,能够可靠地评估红细胞储存损伤,从而评估浓缩物质量。此外,这种方法减少了对复杂实验室程序的需求。