Suppr超能文献

镰状细胞病诊断有助于选择最合适的机器学习方法:迈向一种用于从显微镜图像进行细胞形态分析的通用且可解释的方法。

Sickle-cell disease diagnosis support selecting the most appropriate machine learning method: Towards a general and interpretable approach for cell morphology analysis from microscopy images.

作者信息

Petrović Nataša, Moyà-Alcover Gabriel, Jaume-I-Capó Antoni, González-Hidalgo Manuel

机构信息

UGiVIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, E-07122, Palma, Spain.

SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, E-07122, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), E-07010, Palma, Spain.

出版信息

Comput Biol Med. 2020 Nov;126:104027. doi: 10.1016/j.compbiomed.2020.104027. Epub 2020 Oct 10.

Abstract

In this work we propose an approach to select the classification method and features, based on the state-of-the-art, with best performance for diagnostic support through peripheral blood smear images of red blood cells. In our case we used samples of patients with sickle-cell disease which can be generalized for other study cases. To trust the behavior of the proposed system, we also analyzed the interpretability. We pre-processed and segmented microscopic images, to ensure high feature quality. We applied the methods used in the literature to extract the features from blood cells and the machine learning methods to classify their morphology. Next, we searched for their best parameters from the resulting data in the feature extraction phase. Then, we found the best parameters for every classifier using Randomized and Grid search. For the sake of scientific progress, we published parameters for each classifier, the implemented code library, the confusion matrices with the raw data, and we used the public erythrocytesIDB dataset for validation. We also defined how to select the most important features for classification to decrease the complexity and the training time, and for interpretability purpose in opaque models. Finally, comparing the best performing classification methods with the state-of-the-art, we obtained better results even with interpretable model classifiers.

摘要

在这项工作中,我们提出了一种基于现有技术来选择分类方法和特征的方法,该方法在通过红细胞外周血涂片图像进行诊断支持方面具有最佳性能。在我们的案例中,我们使用了镰状细胞病患者的样本,这些样本可推广到其他研究案例。为了信任所提出系统的行为,我们还分析了其可解释性。我们对微观图像进行了预处理和分割,以确保特征质量高。我们应用文献中使用的方法从血细胞中提取特征,并使用机器学习方法对其形态进行分类。接下来,我们从特征提取阶段得到的数据中搜索其最佳参数。然后,我们使用随机搜索和网格搜索为每个分类器找到最佳参数。为了科学进步,我们公布了每个分类器的参数、实现的代码库、带有原始数据的混淆矩阵,并且我们使用公共的红细胞IDB数据集进行验证。我们还定义了如何选择用于分类的最重要特征,以降低复杂性和训练时间,并用于不透明模型的可解释性目的。最后,将性能最佳的分类方法与现有技术进行比较,即使使用可解释模型分类器,我们也获得了更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验