Suppr超能文献

两栖动物的免疫系统。

The amphibian immune system.

机构信息

Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2023 Jul 31;378(1882):20220123. doi: 10.1098/rstb.2022.0123. Epub 2023 Jun 12.

Abstract

Amphibians are at the forefront of bridging the evolutionary gap between mammals and more ancient, jawed vertebrates. Currently, several diseases have targeted amphibians and understanding their immune system has importance beyond their use as a research model. The immune system of the African clawed frog, , and that of mammals is well conserved. We know that several features of the adaptive and innate immune system are very similar for both, including the existence of B cells, T cells and innate-like T cells. In particular, the study of the immune system at early stages of development is benefitted by studying tadpoles. The tadpoles mainly rely on innate immune mechanisms including pre-set or innate-like T cells until after metamorphosis. In this review we lay out what is known about the innate and adaptive immune system of including the lymphoid organs as well as how other amphibian immune systems are similar or different. Furthermore, we will describe how the amphibian immune system responds to some viral, bacterial and fungal insults. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.

摘要

两栖动物处于连接哺乳动物和更古老的有颌脊椎动物之间进化差距的前沿。目前,有几种疾病针对两栖动物,了解它们的免疫系统除了作为研究模型外,还有重要意义。非洲爪蟾的免疫系统与哺乳动物的免疫系统高度保守。我们知道,适应性免疫系统和先天免疫系统的几个特征对两者都非常相似,包括 B 细胞、T 细胞和先天样 T 细胞的存在。特别是,通过研究蝌蚪,可以更好地研究早期发育阶段的免疫系统。蝌蚪主要依赖于先天免疫机制,包括预先设定或先天样 T 细胞,直到变态期后。在这篇综述中,我们阐述了关于包括淋巴器官在内的 的先天和适应性免疫系统的知识,以及其他两栖动物免疫系统的相似或不同之处。此外,我们将描述两栖动物免疫系统对一些病毒、细菌和真菌感染的反应。本文是主题为“两栖动物免疫:应激、疾病和生态免疫学”的一部分。

相似文献

1
The amphibian immune system.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 31;378(1882):20220123. doi: 10.1098/rstb.2022.0123. Epub 2023 Jun 12.
2
Towards the generation of gnotobiotic larvae as a tool to investigate the influence of the microbiome on the development of the amphibian immune system.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 31;378(1882):20220125. doi: 10.1098/rstb.2022.0125. Epub 2023 Jun 12.
3
A perspective into the relationships between amphibian () myeloid cell subsets.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 31;378(1882):20220124. doi: 10.1098/rstb.2022.0124. Epub 2023 Jun 12.
4
The amphibian (Xenopus laevis) type I interferon response to frog virus 3: new insight into ranavirus pathogenicity.
J Virol. 2014 May;88(10):5766-77. doi: 10.1128/JVI.00223-14. Epub 2014 Mar 12.
5
Developmental expression profiles and thyroidal regulation of cytokines during metamorphosis in the amphibian Xenopus laevis.
Gen Comp Endocrinol. 2018 Jul 1;263:62-71. doi: 10.1016/j.ygcen.2018.04.008. Epub 2018 Apr 12.
6
Developmental changes of purinergic control of intestinal motor activity during metamorphosis in the African clawed frog, Xenopus laevis.
Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1916-25. doi: 10.1152/ajpregu.00785.2006. Epub 2007 Feb 1.
7
Prominent amphibian (Xenopus laevis) tadpole type III interferon response to the frog virus 3 ranavirus.
J Virol. 2015 May;89(9):5072-82. doi: 10.1128/JVI.00051-15. Epub 2015 Feb 25.
8
The future of amphibian immunology: Opportunities and challenges.
Dev Comp Immunol. 2024 Nov;160:105237. doi: 10.1016/j.dci.2024.105237. Epub 2024 Aug 3.
9
Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors.
Immunogenetics. 2007 Apr;59(4):281-93. doi: 10.1007/s00251-007-0193-y. Epub 2007 Jan 30.

引用本文的文献

1
as an infection model for human pathogenic bacteria.
Infect Immun. 2025 Jun 10;93(6):e0012625. doi: 10.1128/iai.00126-25. Epub 2025 May 1.
2
Amphibian cellular immune response to chytridiomycosis at metamorphic climax.
Immunol Res. 2025 Jan 30;73(1):44. doi: 10.1007/s12026-025-09599-5.
3
The Amphibian Major Histocompatibility Complex-A Review and Future Outlook.
J Mol Evol. 2025 Feb;93(1):38-61. doi: 10.1007/s00239-024-10223-7. Epub 2025 Jan 7.
4
Adeno-associated viral tools to trace neural development and connectivity across amphibians.
Dev Cell. 2025 Mar 10;60(5):794-812.e6. doi: 10.1016/j.devcel.2024.10.025. Epub 2024 Nov 26.
5
Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species.
Biology (Basel). 2024 Mar 23;13(4):210. doi: 10.3390/biology13040210.
6
Amphibian as an experimental model for infection studies with the chytrid fungus .
Virulence. 2023 Dec;14(1):2270252. doi: 10.1080/21505594.2023.2270252. Epub 2023 Oct 27.
7
Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology.
Philos Trans R Soc Lond B Biol Sci. 2023 Jul 31;378(1882):20220117. doi: 10.1098/rstb.2022.0117. Epub 2023 Jun 12.

本文引用的文献

1
Advances in the Xenopus immunome: Diversification, expansion, and contraction.
Dev Comp Immunol. 2023 Aug;145:104734. doi: 10.1016/j.dci.2023.104734. Epub 2023 May 10.
2
The amphibian invitrome: Past, present, and future contributions to our understanding of amphibian immunity.
Dev Comp Immunol. 2023 May;142:104644. doi: 10.1016/j.dci.2023.104644. Epub 2023 Jan 25.
3
A comparison of amphibian (Xenopus laevis) tadpole and adult frog macrophages.
Dev Comp Immunol. 2023 Apr;141:104647. doi: 10.1016/j.dci.2023.104647. Epub 2023 Jan 24.
4
Batrachochytrium salamandrivorans' Amphibian Host Species and Invasion Range.
Ecohealth. 2022 Dec;19(4):475-486. doi: 10.1007/s10393-022-01620-9. Epub 2023 Jan 7.
5
Molecular diversity and functional implication of amphibian interferon complex: Remarking immune adaptation in vertebrate evolution.
Dev Comp Immunol. 2023 Mar;140:104624. doi: 10.1016/j.dci.2022.104624. Epub 2022 Dec 28.
6
Amphibians as a model to study the role of immune cell heterogeneity in host and mycobacterial interactions.
Dev Comp Immunol. 2023 Feb;139:104594. doi: 10.1016/j.dci.2022.104594. Epub 2022 Nov 18.
8
Salamanders reveal novel trajectories of amphibian MHC evolution.
Evolution. 2022 Oct;76(10):2436-2449. doi: 10.1111/evo.14601. Epub 2022 Sep 8.
9
Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update.
Dev Comp Immunol. 2022 Nov;136:104510. doi: 10.1016/j.dci.2022.104510. Epub 2022 Aug 17.
10
γδ T, NKT, and MAIT Cells During Evolution: Redundancy or Specialized Functions?
J Immunol. 2022 Jul 15;209(2):217-225. doi: 10.4049/jimmunol.2200105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验