Suppr超能文献

琼脂糖流体凝胶在凝胶过程中的剪切处理下形成,用于悬浮 3D 生物打印。

Agarose Fluid Gels Formed by Shear Processing During Gelation for Suspended 3D Bioprinting.

机构信息

Department of Pharmacy, University of Huddersfield.

School of Chemical Engineering, University of Birmingham.

出版信息

J Vis Exp. 2023 May 26(195). doi: 10.3791/64458.

Abstract

The use of granular matrices to support parts during the bioprinting process was first reported by Bhattacharjee et al. in 2015, and since then, several approaches have been developed for the preparation and use of supporting gel beds in 3D bioprinting. This paper describes a process to manufacture microgel suspensions using agarose (known as fluid gels), wherein particle formation is governed by the application of shear during gelation. Such processing produces carefully defined microstructures, with subsequent material properties that impart distinct advantages as embedding print media, both chemically and mechanically. These include behaving as viscoelastic solid-like materials at zero shear, limiting long-range diffusion, and demonstrating the characteristic shear-thinning behavior of flocculated systems. On the removal of shear stress, however, fluid gels have the capacity to rapidly recover their elastic properties. This lack of hysteresis is directly linked to the defined microstructures previously alluded to; because of the processing, reactive, non-gelled polymer chains at the particle interface facilitate interparticle interactions-similar to a Velcro effect. This rapid recovery of elastic properties enables bioprinting high-resolution parts from low-viscosity biomaterials, as rapid reformation of the support bed traps the bioink in situ, maintaining its shape. Furthermore, an advantage of agarose fluid gels is the asymmetric gelling/melting transitions (gelation temperature of ~30 °C and melting temperature of ~90 °C). This thermal hysteresis of agarose makes it possible to print and culture the bioprinted part in situ without the supporting fluid gel melting. This protocol shows how to manufacture agarose fluid gels and demonstrates their use to support the production of a range of complex hydrogel parts within suspended-layer additive manufacture (SLAM).

摘要

2015 年,Bhattacharjee 等人首次报道了使用颗粒基质在生物打印过程中支撑零件,此后,已经开发出几种方法来制备和使用 3D 生物打印中的支撑凝胶床。本文描述了一种使用琼脂糖(称为流体凝胶)制造微凝胶悬浮液的方法,其中颗粒形成受凝胶化过程中剪切的应用控制。这种处理方法可产生精心定义的微结构,随后的材料特性赋予了作为嵌入打印介质的独特优势,无论是在化学上还是机械上。这些优势包括在零剪切下表现为粘弹性固体状材料,限制长程扩散,并表现出絮凝系统的特征剪切稀化行为。然而,当去除剪切应力时,流体凝胶具有快速恢复其弹性特性的能力。这种无滞后现象直接与之前提到的定义明确的微观结构有关;由于加工,颗粒界面处的反应性、未凝胶化的聚合物链促进了颗粒间的相互作用——类似于魔术贴效应。这种弹性特性的快速恢复使能够从低粘度生物材料中生物打印高分辨率零件,因为支撑床的快速再形成将生物墨水就地捕获,保持其形状。此外,琼脂糖流体凝胶的一个优点是不对称的胶凝/熔化转变(胶凝温度约为 30°C,熔化温度约为 90°C)。琼脂糖的这种热滞后使得能够在不使支撑性流体凝胶熔化的情况下就地打印和培养生物打印零件。该方案展示了如何制造琼脂糖流体凝胶,并展示了它们在悬浮层添加剂制造(SLAM)中支撑一系列复杂水凝胶零件生产的用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验