文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用明胶片段对基于聚乙二醇的分子工程水凝胶进行 3D 生物打印。

3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.

机构信息

Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, 3000 Leuven, Belgium.

Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium.

出版信息

Biofabrication. 2021 Aug 5;13(4). doi: 10.1088/1758-5090/ac0ff0.


DOI:10.1088/1758-5090/ac0ff0
PMID:34192670
Abstract

Three-dimensional (3D) bioprinting is an additive manufacturing process in which the combination of biomaterials and living cells, referred to as a bioink, is deposited layer-by-layer to form biologically active 3D tissue constructs. Recent advancements in the field show that the success of this technology requires the development of novel biomaterials or the improvement of existing bioinks. Polyethylene glycol (PEG) is one of the well-known synthetic biomaterials and has been commonly used as a photocrosslinkable bioink for bioprinting; however, other types of cell-friendly crosslinking mechanisms to form PEG hydrogels need to be explored for bioprinting and tissue engineering. In this work, we proposed micro-capillary based bioprinting of a novel molecularly engineered PEG-based bioink that transiently incorporates low molecular weight gelatin (LMWG) fragments. The rheological properties and release profile of the LMWG fragments were characterized, and their presence during hydrogel formation had no effect on the swelling ratio or sol fraction when compared to PEG hydrogels formed without the LMWG fragments. For bioprinting, PEG was first functionalized with cell-adhesive RGD ligands and was then crosslinked using protease-sensitive peptides via a Michael-type addition reaction inside the micro-capillary. The printability was assessed by the analysis of extrudability, shape fidelity, and printing accuracy of the hydrogel filaments after the optimization of the gelation conditions of the PEG-based bioink. The LMWG fragments supplemented into the bioink allowed the extrusion of smooth and uniform cylindrical strands of the hydrogel and improved shape fidelity and printing accuracy. Encapsulated cells in both bioprinted and non-bioprinted PEG-based hydrogels showed high viability and continued to proliferate over time in culture with a well-defined cell morphology depending on the presence of the cell adhesive peptide RGD. The presented micro-capillary based bioprinting process for a novel PEG-based bioink can be promising to construct complex 3D structures with micro-scale range and spatiotemporal variations without using any cytotoxic photoinitiator, UV light, or polymer support.

摘要

三维(3D)生物打印是一种增材制造工艺,其中生物材料和活细胞的组合,称为生物墨水,逐层沉积以形成具有生物活性的 3D 组织构建体。该领域的最新进展表明,这项技术的成功需要开发新型生物材料或改进现有的生物墨水。聚乙二醇(PEG)是一种众所周知的合成生物材料,已被广泛用作用于生物打印的光交联生物墨水;然而,需要探索其他类型的细胞友好型交联机制来形成用于生物打印和组织工程的 PEG 水凝胶。在这项工作中,我们提出了基于微通道的新型分子工程 PEG 基生物墨水的生物打印,该生物墨水瞬时掺入低分子量明胶(LMWG)片段。对 LMWG 片段的流变性能和释放特性进行了表征,并且与没有 LMWG 片段形成的 PEG 水凝胶相比,在水凝胶形成过程中它们的存在对溶胀比或溶胶分数没有影响。对于生物打印,首先将 PEG 用细胞黏附性 RGD 配体功能化,然后通过迈克尔型加成反应在微通道内用蛋白酶敏感肽交联。通过分析优化的 PEG 基生物墨水凝胶条件下的挤出性、形状保真度和打印精度来评估可打印性。补充到生物墨水中的 LMWG 片段允许挤出光滑且均匀的水凝胶圆柱状丝,并且提高了形状保真度和打印精度。在生物打印和非生物打印的 PEG 基水凝胶中包封的细胞表现出高活力,并在培养过程中随着时间的推移继续增殖,具有明确的细胞形态,这取决于细胞黏附肽 RGD 的存在。用于新型 PEG 基生物墨水的提出的基于微通道的生物打印工艺有望构建具有微尺度范围和时空变化的复杂 3D 结构,而无需使用任何细胞毒性光引发剂、UV 光或聚合物支撑。

相似文献

[1]
3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.

Biofabrication. 2021-8-5

[2]
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.

Acta Biomater. 2019-9-17

[3]
A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.

Acta Biomater. 2019-7-2

[4]
Advancing bioinks for 3D bioprinting using reactive fillers: A review.

Acta Biomater. 2020-9-1

[5]
Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.

Adv Healthc Mater. 2020-8

[6]
Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.

Biomed Mater. 2022-6-15

[7]
Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

Biofabrication. 2016-9-16

[8]
Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.

Biofabrication. 2021-4-8

[9]
Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.

J Mech Behav Biomed Mater. 2020-3

[10]
Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.

J Biomater Appl. 2018-10-25

引用本文的文献

[1]
Bridging the Gap: Unlocking the Potential of Biofabrication for Applications in In Vitro Testing.

Langmuir. 2025-8-12

[2]
Hydrogel-Based Bioinks for Coaxial and Triaxial Bioprinting: A Review of Material Properties, Printing Techniques, and Applications.

Polymers (Basel). 2025-3-28

[3]
Unlocking 3D printing technology for microalgal production and application.

Adv Biotechnol (Singap). 2024-10-8

[4]
Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study.

Polymers (Basel). 2025-1-6

[5]
Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects.

Int J Mol Sci. 2024-11-22

[6]
3D Bioprinting Highly Elastic PEG-PCL-DA Hydrogel for Soft Tissue Fabrication and Biomechanical Stimulation.

Adv Funct Mater. 2024-7-10

[7]
Recent Developments and Applications of 3D-Printing Technology in Pharmaceutical Drug Delivery Systems: A New Research Direction and Future Trends.

Curr Pharm Des. 2025

[8]
Advanced tumor organoid bioprinting strategy for oncology research.

Mater Today Bio. 2024-8-8

[9]
Design approaches for 3D cell culture and 3D bioprinting platforms.

Biophys Rev (Melville). 2024-5-16

[10]
Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration.

Membranes (Basel). 2023-9-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索