Suppr超能文献

用于域适应行人重识别的逻辑关系推理与多视图信息交互

Logical Relation Inference and Multiview Information Interaction for Domain Adaptation Person Re-Identification.

作者信息

Li Shuang, Li Fan, Li Jinxing, Li Huafeng, Zhang Bob, Tao Dapeng, Gao Xinbo

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14770-14782. doi: 10.1109/TNNLS.2023.3281504. Epub 2024 Oct 7.

Abstract

Domain adaptation person re-identification (Re-ID) is a challenging task, which aims to transfer the knowledge learned from the labeled source domain to the unlabeled target domain. Recently, some clustering-based domain adaptation Re-ID methods have achieved great success. However, these methods ignore the inferior influence on pseudo-label prediction due to the different camera styles. The reliability of the pseudo-label plays a key role in domain adaptation Re-ID, while the different camera styles bring great challenges for pseudo-label prediction. To this end, a novel method is proposed, which bridges the gap of different cameras and extracts more discriminative features from an image. Specifically, an intra-to-intermechanism is introduced, in which samples from their own cameras are first grouped and then aligned at the class level across different cameras followed by our logical relation inference (LRI). Thanks to these strategies, the logical relationship between simple classes and hard classes is justified, preventing sample loss caused by discarding the hard samples. Furthermore, we also present a multiview information interaction (MvII) module that takes features of different images from the same pedestrian as patch tokens, obtaining the global consistency of a pedestrian that contributes to the discriminative feature extraction. Unlike the existing clustering-based methods, our method employs a two-stage framework that generates reliable pseudo-labels from the views of the intracamera and intercamera, respectively, to differentiate the camera styles, subsequently increasing its robustness. Extensive experiments on several benchmark datasets show that the proposed method outperforms a wide range of state-of-the-art methods. The source code has been released at https://github.com/lhf12278/LRIMV.

摘要

域适应行人重识别(Re-ID)是一项具有挑战性的任务,其目的是将从有标签的源域学到的知识转移到无标签的目标域。最近,一些基于聚类的域适应Re-ID方法取得了巨大成功。然而,这些方法忽略了由于相机风格不同而对伪标签预测产生的不利影响。伪标签的可靠性在域适应Re-ID中起着关键作用,而不同的相机风格给伪标签预测带来了巨大挑战。为此,提出了一种新颖的方法,该方法弥合了不同相机之间的差距,并从图像中提取更具判别力的特征。具体来说,引入了一种从内到外的机制,其中首先对来自其自身相机的样本进行分组,然后在不同相机的类级别上进行对齐,随后进行我们的逻辑关系推理(LRI)。得益于这些策略,简单类和困难类之间的逻辑关系得到了合理证明,防止了因丢弃困难样本而导致的样本丢失。此外,我们还提出了一种多视图信息交互(MvII)模块,该模块将来自同一行人的不同图像的特征作为补丁令牌,获得行人的全局一致性,这有助于判别特征提取。与现有的基于聚类的方法不同,我们的方法采用了一个两阶段框架,分别从相机内和相机间的视角生成可靠的伪标签,以区分相机风格,从而提高其鲁棒性。在几个基准数据集上进行的大量实验表明,所提出的方法优于众多现有的先进方法。源代码已在https://github.com/lhf12278/LRIMV上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验