School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China, 150001.
School of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang Province, China, 150001
Genome Res. 2023 May;33(5):750-762. doi: 10.1101/gr.277522.122. Epub 2023 Jun 12.
For most biological and medical applications of single-cell transcriptomics, an integrative study of multiple heterogeneous single-cell RNA sequencing (scRNA-seq) data sets is crucial. However, present approaches are unable to integrate diverse data sets from various biological conditions effectively because of the confounding effects of biological and technical differences. We introduce single-cell integration (scInt), an integration method based on accurate, robust cell-cell similarity construction and unified contrastive biological variation learning from multiple scRNA-seq data sets. scInt provides a flexible and effective approach to transfer knowledge from the already integrated reference to the query. We show that scInt outperforms 10 other cutting-edge approaches using both simulated and real data sets, particularly in the case of complex experimental designs. Application of scInt to mouse developing tracheal epithelial data shows its ability to integrate development trajectories from different developmental stages. Furthermore, scInt successfully identifies functionally distinct condition-specific cell subpopulations in single-cell heterogeneous samples from a variety of biological conditions.
对于单细胞转录组学的大多数生物和医学应用,综合研究多个异质单细胞 RNA 测序(scRNA-seq)数据集至关重要。然而,由于生物和技术差异的混杂效应,目前的方法无法有效地整合来自不同生物条件的多样化数据集。我们引入了单细胞整合(scInt),这是一种基于精确、稳健的细胞间相似性构建和从多个 scRNA-seq 数据集学习统一对比生物变异性的整合方法。scInt 提供了一种灵活有效的方法,可以将知识从已经整合的参考转移到查询中。我们使用模拟和真实数据集表明,scInt 优于其他 10 种最先进的方法,特别是在复杂实验设计的情况下。scInt 应用于小鼠发育气管上皮数据表明,它能够整合来自不同发育阶段的发育轨迹。此外,scInt 成功地在来自多种生物条件的单细胞异质样本中鉴定出具有不同功能的特定条件的细胞亚群。