Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
J Am Chem Soc. 2023 Jun 28;145(25):13888-13900. doi: 10.1021/jacs.3c03261. Epub 2023 Jun 13.
Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < < 224 °C) and good thermal stability (285 < < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water ( = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.
硼功能化聚合物在光电子学、生物学和医学中得到了应用。生产硼功能化和可降解聚酯的方法仍然非常罕见,但在需要(生物)耗散的情况下是相关的,例如在自组装纳米结构、动态聚合物网络和生物成像中。在这里,硼酸酯-邻苯二甲酸酐和各种环氧化物(环己烯氧化物、乙烯基环己烯氧化物、环氧丙烷、烯丙基缩水甘油醚)在有机金属配合物[Zn(II)Mg(II)或 Al(III)K(I)]或磷杂环戊二烯有机碱的催化下进行可控开环共聚(ROCOP)。聚合反应得到很好的控制,允许调节聚酯结构(例如,通过环氧化物选择、AB 或 ABA 嵌段)、摩尔质量(9.4 < < 40 kg/mol)和聚合物中硼功能基团(酯、酸、“ates”、硼酸酯和荧光团)的摄取。硼功能化聚合物为无定形,具有高玻璃化转变温度(81 < < 224°C)和良好的热稳定性(285 < < 322°C)。硼酸酯-聚酯通过脱保护得到硼酸和硼酸盐聚酯;离子聚合物在碱性条件下可溶于水并降解。在交替的环氧化物/酸酐 ROCOP 和内酯开环聚合中使用亲水性大分子引发剂,产生两亲性 AB 和 ABC 共聚酯。或者,硼功能基团经受 Pd(II)催化的交叉偶联以安装荧光团(BODIPY)。这种新单体作为构建特殊聚酯材料的平台的用途在这里通过合成在水中自组装的荧光球形纳米粒子( = 40nm)得到了例证。选择性共聚、可变结构组成和可调硼负载代表了一种用于未来探索可降解、明确和功能性聚合物的多功能技术。