Suppr超能文献

协同杂双核催化剂用于环氧化物、二氧化碳和酸酐的开环共聚(ROCOP)。

Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides.

机构信息

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.

出版信息

Acc Chem Res. 2022 Aug 2;55(15):1997-2010. doi: 10.1021/acs.accounts.2c00197. Epub 2022 Jul 21.

Abstract

The development of sustainable plastic materials is an essential target of chemistry in the 21st century. Key objectives toward this goal include utilizing sustainable monomers and the development of polymers that can be chemically recycled/degraded. Polycarbonates synthesized from the ring-opening copolymerization (ROCOP) of epoxides and CO, and polyesters synthesized from the ROCOP of epoxides and anhydrides, meet these criteria. Despite this, designing efficient catalysts for these processes remains challenging. Typical issues include the requirement for high catalyst loading; low catalytic activities in comparison with other commercialized polymerizations; and the requirement of costly, toxic cocatalysts. The development of efficient catalysts for both types of ROCOP is highly desirable. This Account details our work on the development of catalysts for these two related polymerizations and, in particular, focuses on dinuclear complexes, which are typically applied without any cocatalyst. We have developed mechanistic hypotheses in tandem with our catalysts, and throughout the Account, we describe the kinetic, computational, and structure-activity studies that underpin the performance of these catalysts. Our initial research on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO ROCOP provided data to support a chain shuttling catalytic mechanism, which implied different roles for the two metals in the catalysis. This mechanistic hypothesis inspired the development of mixed-metal, heterodinuclear catalysts. The first of this class of catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)] analogues for CHO/CO ROCOP. Expanding on this finding, we subsequently developed a Co(II)Mg(II) complex that showed field leading rates for CHO/CO ROCOP and allowed for unique insight into the role of the two metals in this complex, where it was established that the Mg(II) center reduced transition state entropy and the Co(II) center reduced transition state enthalpy. Following these discoveries, we subsequently developed a range of heterodinuclear M(III)M(I) catalysts that were capable of catalyzing a broad range of copolymerizations, including the ring-opening copolymerization of CHO/CO, propylene oxide (PO)/CO, and CHO/phthalic anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were found to be exceptionally effective for PO/CO and CHO/PA ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear metalate mechanism, where the M(III) binds and activates monomers while the M(I) species binds the polymer change in close proximity to allow for insertion into the activated monomer. Our research illustrates how careful catalyst design can yield highly efficient systems and how the development of mechanistic understanding aids this process. Avenues of future research are also discussed, including the applicability of these heterodinuclear catalysts in the synthesis of sustainable materials.

摘要

开发可持续塑料材料是 21 世纪化学的一个重要目标。实现这一目标的关键目标包括利用可持续单体和开发可化学回收/降解的聚合物。通过环氧化物和 CO 的开环共聚(ROCOP)合成的聚碳酸酯和通过环氧化物和酸酐的 ROCOP 合成的聚酯符合这些标准。尽管如此,设计这些过程的高效催化剂仍然具有挑战性。典型问题包括需要高催化剂负载;与其他商业化聚合相比,催化活性较低;以及需要昂贵、有毒的共催化剂。因此,非常需要开发这两种 ROCOP 的高效催化剂。本报告详细介绍了我们在这两种相关聚合反应的催化剂开发方面的工作,特别是侧重于双核配合物,通常无需任何共催化剂即可应用。我们已经提出了与我们的催化剂一起的机理假设,在整个报告中,我们描述了支持这些催化剂性能的动力学、计算和结构-活性研究。我们最初对环己烯氧化物(CHO)/CO ROCOP 的均双核 M(II)M(II)配合物的研究提供了数据,支持链穿梭催化机理,这意味着两种金属在催化中具有不同的作用。这一机理假设激发了混合金属、杂双核催化剂的开发。该类催化剂的第一个是杂双核 Zn(II)Mg(II)配合物,其 CHO/CO ROCOP 的速率高于任何均双核[Zn(II)Zn(II)和 Mg(II)Mg(II)]类似物。在此发现的基础上,我们随后开发了一种 Co(II)Mg(II)配合物,其 CHO/CO ROCOP 的速率在该领域处于领先地位,并允许对该配合物中两种金属的作用进行独特的洞察,确定 Mg(II)中心降低过渡态熵,Co(II)中心降低过渡态焓。在此发现之后,我们随后开发了一系列杂双核 M(III)M(I)催化剂,能够催化广泛的共聚反应,包括 CHO/CO、环氧丙烷(PO)/CO 和 CHO/邻苯二甲酸酐(PA)的开环共聚。发现 Co(III)K(I)和 Al(III)K(I)配合物分别对 PO/CO 和 CHO/PA ROCOP 非常有效。这种 M(III)M(I)配合物通过双核金属配合物机制起作用,其中 M(III)结合并激活单体,而 M(I)物种结合聚合物变化,靠近允许插入激活的单体。我们的研究说明了精心设计的催化剂如何能够产生高效的系统,以及对机理理解的发展如何有助于这一过程。还讨论了未来研究的途径,包括这些杂双核催化剂在可持续材料合成中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/950c/9350912/f8074e138d56/ar2c00197_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验