Suppr超能文献

使用RamDA-seq和基于Cas9的rRNA去除技术提高细菌单细胞RNA测序的灵敏度。

Enhancing the sensitivity of bacterial single-cell RNA sequencing using RamDA-seq and Cas9-based rRNA depletion.

作者信息

Nishimura Mika, Takeyama Haruko, Hosokawa Masahito

机构信息

Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

出版信息

J Biosci Bioeng. 2023 Aug;136(2):152-158. doi: 10.1016/j.jbiosc.2023.05.010. Epub 2023 Jun 11.

Abstract

Bacterial populations exhibit heterogeneity in gene expression, which facilitates their survival and adaptation to unstable and unpredictable environments through the bet-hedging strategy. However, unraveling the rare subpopulations and heterogeneity in gene expression using population-level gene expression analysis remains a challenging task. Single-cell RNA sequencing (scRNA-seq) has the potential to identify rare subpopulations and capture heterogeneity in bacterial populations, but standard methods for scRNA-seq in bacteria are still under development, mainly due to differences in mRNA abundance and structure between eukaryotic and prokaryotic organisms. In this study, we present a hybrid approach that combines random displacement amplification sequencing (RamDA-seq) with Cas9-based rRNA depletion for scRNA-seq in bacteria. This approach allows cDNA amplification and subsequent sequencing library preparation from low-abundance bacterial RNAs. We evaluated its sequenced read proportion, gene detection sensitivity, and gene expression patterns from the dilution series of total RNA or the sorted single Escherichia coli cells. Our results demonstrated the detection of more than 1000 genes, about 24% of the genes in the E. coli genome, from single cells with less sequencing effort compared to conventional methods. We observed gene expression clusters between different cellular proliferation states or heat shock treatment. The approach demonstrated high detection sensitivity in gene expression analysis compared to current bacterial scRNA-seq methods and proved to be an invaluable tool for understanding the ecology of bacterial populations and capturing the heterogeneity of bacterial gene expression.

摘要

细菌群体在基因表达上表现出异质性,这通过风险对冲策略促进了它们在不稳定和不可预测环境中的生存与适应。然而,利用群体水平的基因表达分析来揭示罕见亚群和基因表达的异质性仍然是一项具有挑战性的任务。单细胞RNA测序(scRNA-seq)有潜力识别细菌群体中的罕见亚群并捕捉其异质性,但细菌scRNA-seq的标准方法仍在开发中,主要是由于真核生物和原核生物之间mRNA丰度和结构存在差异。在本研究中,我们提出了一种将随机位移扩增测序(RamDA-seq)与基于Cas9的rRNA去除相结合的混合方法,用于细菌的scRNA-seq。这种方法允许从低丰度细菌RNA进行cDNA扩增及后续测序文库制备。我们从总RNA稀释系列或分选的单个大肠杆菌细胞中评估了其测序读段比例、基因检测灵敏度和基因表达模式。我们的结果表明,与传统方法相比,通过较少的测序工作量就能从单个细胞中检测到1000多个基因,约占大肠杆菌基因组中基因的24%。我们观察到不同细胞增殖状态或热休克处理之间的基因表达簇。与当前的细菌scRNA-seq方法相比,该方法在基因表达分析中显示出高检测灵敏度,并且被证明是理解细菌群体生态学和捕捉细菌基因表达异质性的宝贵工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验