Suppr超能文献

CT 血管造影影像组学结合传统危险因素预测脑动静脉畸形破裂:一项机器学习、多中心研究。

CT Angiography Radiomics Combining Traditional Risk Factors to Predict Brain Arteriovenous Malformation Rupture: a Machine Learning, Multicenter Study.

机构信息

Department of Neurosurgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

出版信息

Transl Stroke Res. 2024 Aug;15(4):784-794. doi: 10.1007/s12975-023-01166-0. Epub 2023 Jun 13.

Abstract

This study aimed to develop a machine learning model for predicting brain arteriovenous malformation (bAVM) rupture using a combination of traditional risk factors and radiomics features. This multicenter retrospective study enrolled 586 patients with unruptured bAVMs from 2010 to 2020. All patients were grouped into the hemorrhage (n = 368) and non-hemorrhage (n = 218) groups. The bAVM nidus were segmented on CT angiography images using Slicer software, and radiomic features were extracted using Pyradiomics. The dataset included a training set and an independent testing set. The machine learning model was developed on the training set and validated on the testing set by merging numerous base estimators and a final estimator based on the stacking method. The area under the receiver operating characteristic (ROC) curve, precision, and the f1 score were evaluated to determine the performance of the model. A total of 1790 radiomics features and 8 traditional risk factors were contained in the original dataset, and 241 features remained for model training after L1 regularization filtering. The base estimator of the ensemble model was Logistic Regression, whereas the final estimator was Random Forest. In the training set, the area under the ROC curve of the model was 0.982 (0.967-0.996) and 0.893 (0.826-0.960) in the testing set. This study indicated that radiomics features are a valuable addition to traditional risk factors for predicting bAVM rupture. In the meantime, ensemble learning can effectively improve the performance of a prediction model.

摘要

本研究旨在开发一种使用传统风险因素和放射组学特征相结合的机器学习模型,用于预测脑动静脉畸形(bAVM)破裂。这项多中心回顾性研究纳入了 2010 年至 2020 年间 586 例未破裂 bAVM 患者。所有患者均分为出血组(n=368)和非出血组(n=218)。使用 Slicer 软件对 CT 血管造影图像进行 bAVM 结节分割,并使用 Pyradiomics 提取放射组学特征。数据集包括训练集和独立测试集。在训练集上开发机器学习模型,并通过合并多个基础估计器和基于堆叠方法的最终估计器在测试集上进行验证。通过接收者操作特征(ROC)曲线下面积、精度和 f1 评分来评估模型的性能。原始数据集中包含 1790 个放射组学特征和 8 个传统风险因素,经过 L1 正则化过滤后,有 241 个特征用于模型训练。集成模型的基础估计器为逻辑回归,最终估计器为随机森林。在训练集中,模型的 ROC 曲线下面积为 0.982(0.967-0.996),在测试集中为 0.893(0.826-0.960)。本研究表明,放射组学特征是预测 bAVM 破裂的传统风险因素的有价值补充。同时,集成学习可以有效提高预测模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验