Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.
Microbiol Spectr. 2023 Aug 17;11(4):e0473322. doi: 10.1128/spectrum.04733-22. Epub 2023 Jun 14.
Bacteria have to persist under low iron conditions in order to adapt to the nutritional immunity of a host. Since the knowledge of iron stimulon of is sparse, we examined oral (Porphyromonas gingivalis and Prevotella intermedia) and gut (Bacteroides thataiotaomicron) representatives for their ability to adapt to iron deplete and iron replete conditions. Our transcriptomics and comparative genomics analysis show that many iron-regulated mechanisms are conserved within the phylum. They include genes upregulated in low iron, as follows: (flavodoxin), (hemin uptake operon), and loci encoding ABC transporters. Downregulated genes were (ferredoxin), (rubrerythrin), (succinate dehydrogenase/fumarate reductase), (oxoglutarate oxidoreductase/dehydrogenase), and (pyruvate:ferredoxin/flavodoxin oxidoreductase). Some genus-specific mechanisms, such as the of B. thetaiotaomicron coding for carbohydrate metabolism and the coding for xenosiderophore utilization were also identified. While all bacteria tested in our study had the operon coding for nitrite reduction and were able to reduce nitrite levels present in culture media, the expression of the operon was iron dependent only in B. thetaiotaomicron. It is noteworthy that we identified a significant overlap between regulated genes found in our study and the B. thetaiotaomicron colitis study (W. Zhu, M. G. Winter, L. Spiga, E. R. Hughes et al., Cell Host Microbe 27:376-388, 2020, http://dx.doi.org/10.1016/j.chom.2020.01.010). Many of those commonly regulated genes were also iron regulated in the oral bacterial genera. Overall, this work points to iron being the master regulator enabling bacterial persistence in the host and paves the way for a more generalized investigation of the molecular mechanisms of iron homeostasis in . are an important group of anaerobic bacteria abundant both in the oral and gut microbiomes. Although iron is a required nutrient for most living organisms, the molecular mechanisms of adaptation to the changing levels of iron are not well known in this group of bacteria. We defined the iron stimulon of by examination of the transcriptomic response of Porphyromonas gingivalis and Prevotella intermedia (both belong to the oral microbiome) and Bacteroidetes thetaiotaomicron (belongs to the gut microbiome). Our results indicate that many of the iron-regulated operons are shared among the three genera. Furthermore, using bioinformatics analysis, we identified a significant overlap between our studies and transcriptomic data derived from a colitis study, thus underscoring the biological significance of our work. Defining the iron-dependent stimulon of can help to identify the molecular mechanisms of iron-dependent regulation as well as better understand the persistence of the anaerobes in the human host.
细菌必须在低铁条件下生存,以适应宿主的营养免疫。由于对 的铁刺激物知之甚少,我们检查了口腔(牙龈卟啉单胞菌和中间普氏菌)和肠道(拟杆菌属)代表菌适应缺铁和铁充足条件的能力。我们的转录组学和比较基因组学分析表明,许多铁调节机制在门内是保守的。它们包括在低铁条件下上调的基因,如下所示: (黄素蛋白)、 (血红素摄取操纵子)和编码 ABC 转运体的基因。下调的基因是 (铁氧还蛋白)、 (菌绿素)、 (琥珀酸脱氢酶/延胡索酸还原酶)、 (谷氨酸氧化还原酶/脱氢酶)和 (丙酮酸:铁氧还蛋白/黄素蛋白氧化还原酶)。还确定了一些属特异性机制,例如编码碳水化合物代谢的 B. thetaiotaomicron 的 和编码外消旋铁载体利用的 。虽然我们研究中的所有细菌都具有编码亚硝酸盐还原的 基因,并且能够降低培养基中存在的亚硝酸盐水平,但该基因的表达仅在 B. thetaiotaomicron 中依赖于铁。值得注意的是,我们在研究中发现的调节基因与 B. thetaiotaomicron 结肠炎研究之间存在显著重叠(W. Zhu、M. G. Winter、L. Spiga、E. R. Hughes 等人,Cell Host Microbe 27:376-388, 2020, http://dx.doi.org/10.1016/j.chom.2020.01.010)。许多共同调节的基因在口腔细菌属中也是铁调节的。总的来说,这项工作表明铁是使细菌在宿主中持续存在的主要调节剂,并为更广泛地研究 中的铁稳态分子机制铺平了道路。 是在口腔和肠道微生物组中都大量存在的一组重要的厌氧细菌。尽管铁是大多数生物体所需的营养物质,但在该细菌组中,适应铁水平变化的分子机制尚不清楚。我们通过检查牙龈卟啉单胞菌和中间普氏菌(均属于口腔微生物组)和拟杆菌属的转录组反应来定义 的铁刺激物。taiotaomicron(属于肠道微生物组)。我们的结果表明,许多铁调节操纵子在这三个属中都有共享。此外,通过生物信息学分析,我们在我们的 研究和源自结肠炎研究的转录组数据之间发现了显著的重叠,从而强调了我们工作的生物学意义。定义铁依赖性的 刺激物可以帮助识别铁依赖性调节的分子机制,并更好地理解厌氧菌在人体宿主中的持续存在。