Yonsei University, 403 Widang Hall, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
UNIVERSITY OF CALIFORNIA, LOS ANGELES, Los Angeles, USA.
Psychometrika. 2023 Sep;88(3):830-864. doi: 10.1007/s11336-023-09920-x. Epub 2023 Jun 14.
Traditional measurement models assume that all item responses correlate with each other only through their underlying latent variables. This conditional independence assumption has been extended in joint models of responses and response times (RTs), implying that an item has the same item characteristics fors all respondents regardless of levels of latent ability/trait and speed. However, previous studies have shown that this assumption is violated in various types of tests and questionnaires and there are substantial interactions between respondents and items that cannot be captured by person- and item-effect parameters in psychometric models with the conditional independence assumption. To study the existence and potential cognitive sources of conditional dependence and utilize it to extract diagnostic information for respondents and items, we propose a diffusion item response theory model integrated with the latent space of variations in information processing rate of within-individual measurement processes. Respondents and items are mapped onto the latent space, and their distances represent conditional dependence and unexplained interactions. We provide three empirical applications to illustrate (1) how to use an estimated latent space to inform conditional dependence and its relation to person and item measures, (2) how to derive diagnostic feedback personalized for respondents, and (3) how to validate estimated results with an external measure. We also provide a simulation study to support that the proposed approach can accurately recover its parameters and detect conditional dependence underlying data.
传统的测量模型假设所有项目反应仅通过其潜在的潜在变量相互关联。这种条件独立性假设在反应和反应时间(RT)的联合模型中得到了扩展,这意味着无论潜在能力/特征和速度水平如何,项目对所有受访者都具有相同的项目特征。然而,先前的研究表明,这种假设在各种类型的测试和问卷中都被违反了,并且在具有条件独立性假设的心理测量模型中,受访者和项目之间存在大量无法通过个体和项目效应参数捕获的相互作用。为了研究条件依赖性的存在和潜在的认知来源,并利用它为受访者和项目提取诊断信息,我们提出了一种扩散项目反应理论模型,该模型与个体内测量过程中信息处理率变化的潜在空间相结合。受访者和项目被映射到潜在空间上,它们之间的距离代表条件依赖性和未解释的相互作用。我们提供了三个实证应用来说明(1)如何使用估计的潜在空间来告知条件依赖性及其与个体和项目度量的关系,(2)如何为受访者提供个性化的诊断反馈,以及(3)如何使用外部度量来验证估计结果。我们还进行了一项模拟研究,以支持所提出的方法可以准确地恢复其参数并检测数据中的条件依赖性。